day6_动态规划1

2024-05-13 23:05
文章标签 动态 规划 day6

本文主要是介绍day6_动态规划1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划

一、动态规划解题套路框架

动态规划问题性质

1.暴力递归

引出 重叠子问题

2.使用“备忘录”

目的:重叠子问题(使用数组或哈希表)

带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。实际上,这种解法和常见的动态规划解法已经差不多了,只不过这种解法是「自顶向下」进行「递归」求解,我们更常见的动态规划代码是「自底向上」进行「递推」求解

3.自底向上

啥叫「自底向上」?反过来,我们直接从最底下、最简单、问题规模最小、已知结果的 f(1)f(2)(base case)开始往上推,直到推到我们想要的答案 f(20)。这就是「递推」的思路,这也是动态规划一般都脱离了递归,而是由循环迭代完成计算的原因

4.状态转移方程

f(n) 的函数参数会不断变化,所以你把参数 n 想做一个状态,这个状态 n 是由状态 n - 1 和状态 n - 2 转移(相加)而来,这就叫状态转移,仅此而已。

状态转移方程直接代表着暴力解法。

千万不要看不起暴力解,动态规划问题最困难的就是写出这个暴力解,即状态转移方程

只要写出暴力解,优化方法无非是用备忘录或者 DP table,再无奥妙可言。

5.细节优化:

一般是动态规划问题的最后一步优化,如果我们发现每次状态转移只需要 DP table 中的一部分,那么可以尝试缩小 DP table 的大小,只记录必要的数据,从而降低空间复杂度

例题1,零钱兑换

带备忘录的递归解法

class Solution {int[] memo;int coinChange(int[] coins, int amount) {memo = new int[amount + 1];// 备忘录初始化为一个不会被取到的特殊值,代表还未被计算Arrays.fill(memo, -666);return dp(coins, amount);}int dp(int[] coins, int amount) {if (amount == 0) return 0;if (amount < 0) return -1;// 查备忘录,防止重复计算if (memo[amount] != -666)return memo[amount];int res = Integer.MAX_VALUE;for (int coin : coins) {// 计算子问题的结果int subProblem = dp(coins, amount - coin);// 子问题无解则跳过if (subProblem == -1) continue;// 在子问题中选择最优解,然后加一res = Math.min(res, subProblem + 1);}// 把计算结果存入备忘录memo[amount] = (res == Integer.MAX_VALUE) ? -1 : res;return memo[amount];}
}

动态规划解法

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount + 1];// 数组大小为 amount + 1,初始值也为 amount + 1Arrays.fill(dp, amount + 1);// base casedp[0] = 0;// 外层 for 循环在遍历所有状态的所有取值for (int i = 0; i < dp.length; i++) {// 内层 for 循环在求所有选择的最小值for (int coin : coins) {// 子问题无解,跳过if (i - coin < 0) {continue;}dp[i] = Math.min(dp[i], 1 + dp[i - coin]);}}return (dp[amount] == amount + 1) ? -1 : dp[amount];}
}

总结

计算机解决问题其实没有任何特殊的技巧,它唯一的解决办法就是穷举,穷举所有可能性。算法设计无非就是先思考“如何穷举”,然后再追求“如何聪明地穷举”。

列出状态转移方程,就是在解决“如何穷举”的问题。之所以说它难,一是因为很多穷举需要递归实现,二是因为有的问题本身的解空间复杂,不那么容易穷举完整。

备忘录、DP table 就是在追求“如何聪明地穷举”。用空间换时间的思路,是降低时间复杂度的不二法门,除此之外,试问,还能玩出啥花活?

一、动态规划设计:最长递增子序列

参考链接动态规划设计:最长递增子序列 | labuladong 的算法笔记

设计状态转移方程

借助经典的「最长递增子序列问题」来讲一讲设计动态规划的通用技巧:数学归纳思想

1.最长递增子序列问题(动态规划)
int lengthOfLIS(int[] nums) {// 定义:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度int[] dp = new int[nums.length];// base case:dp 数组全都初始化为 1Arrays.fill(dp, 1);for (int i = 0; i < nums.length; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1);}}int res = 0;for (int i = 0; i < dp.length; i++) {res = Math.max(res, dp[i]);}return res;
}
2.最长递增子序列问题(动态规划+二分查找)
int lengthOfLIS(int[] nums) {int[] top = new int[nums.length];// 牌堆数初始化为 0int piles = 0;for (int i = 0; i < nums.length; i++) {// 要处理的扑克牌int poker = nums[i];/***** 搜索左侧边界的二分查找 *****/int left = 0, right = piles;while (left < right) {int mid = (left + right) / 2;if (top[mid] > poker) {right = mid;} else if (top[mid] < poker) {left = mid + 1;} else {right = mid;}}/*********************************/// 没找到合适的牌堆,新建一堆if (left == piles) piles++;// 把这张牌放到牌堆顶top[left] = poker;}// 牌堆数就是 LIS 长度return piles;
}
3. 354.俄罗斯套娃信封问题(hard)

//在二分查找的基础上解决,只使用动态规划会超出时间限制

  1. 将宽度升序排序,在宽度相同的基础上进行降序排序

    因为宽度或高度有一个相同就不能嵌套,所以,为了保证结果不会出现两个宽度相同的信封而将高度降序

  2. 只根据处理后的高度进行最长递增子序列问题解决

class Solution {
// envelopes = [[w, h], [w, h]...]
public int maxEnvelopes(int[][] envelopes) {int n = envelopes.length;// 按宽度升序排列,如果宽度一样,则按高度降序排列Arrays.sort(envelopes, (int[] a, int[] b) -> {return a[0] == b[0] ? b[1] - a[1] : a[0] - b[0];});// 对高度数组寻找 LISint[] height = new int[n];for (int i = 0; i < n; i++)height[i] = envelopes[i][1];return lengthOfLIS(height);
}int lengthOfLIS(int[] nums) {int[] top = new int[nums.length];// 牌堆数初始化为 0int piles = 0;for (int i = 0; i < nums.length; i++) {// 要处理的扑克牌int poker = nums[i];/***** 搜索左侧边界的二分查找 *****/int left = 0, right = piles;while (left < right) {int mid = (left + right) / 2;if (top[mid] > poker) {right = mid;} else if (top[mid] < poker) {left = mid + 1;} else {right = mid;}}/*********************************/// 没找到合适的牌堆,新建一堆if (left == piles) piles++;// 把这张牌放到牌堆顶top[left] = poker;}// 牌堆数就是 LIS 长度return piles;
}}

二、最优子结构原理和dp数组遍历方向

重点

1、到底什么才叫「最优子结构」,和动态规划什么关系。

子问题之间独立,最优子结构性质作为动态规划问题的必要条件,一定是让你求最值的

动态规划不就是从最简单的 base case 往后推导吗,可以想象成一个链式反应,以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。

2、如何判断一个问题是动态规划问题,即如何看出是否存在重叠子问题。

求最值,抽象出递归框架,如果达到某个状态可以由不同的子状态组成,那么这个问题就存在重叠子问题

3、为什么经常看到将 dp 数组的大小设置为 n + 1 而不是 n

因为递归一般是使用方法,而dp一般使用数组结合for循环进行计算无法定义 base case

  1. dp 函数的定义,dp(s1, i, s2, j) 计算 s1[0..i]s2[0..j] 的编辑距离,那么 i, j 等于 -1 时代表空串的 base case,所以函数开头处理了这两种特殊情况。
  2. 再看 dp 数组,你当然也可以定义 dp[i][j] 存储 s1[0..i]s2[0..j] 的编辑距离,但问题是 base case 怎么搞?索引怎么能是 -1 呢?
  3. 所以我们把 dp 数组初始化为 int[m+1][n+1],让索引整体偏移一位,把索引 0 留出来作为 base case 表示空串,然后定义 dp[i+1][j+1] 存储 s1[0..i]s2[0..j] 的编辑距离

4、为什么动态规划遍历 dp 数组的方式五花八门,有的正着遍历,有的倒着遍历,有的斜着遍历。

重点掌握两点:

1、遍历的过程中,所需的状态必须是已经计算出来的

2、遍历结束后,存储结果的那个位置必须已经被计算出来

这篇关于day6_动态规划1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987059

相关文章

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Vue3中的动态组件详解

《Vue3中的动态组件详解》本文介绍了Vue3中的动态组件,通过`component:is=动态组件名或组件对象/component`来实现根据条件动态渲染不同的组件,此外,还提到了使用`markRa... 目录vue3动态组件动态组件的基本使用第一种写法第二种写法性能优化解决方法总结Vue3动态组件动态