polars学习-03 数据类型转换

2024-05-13 20:44

本文主要是介绍polars学习-03 数据类型转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

polars学习系列文章,第3篇 数据类型转换。
该系列文章会分享到github,大家可以去下载jupyter文件
仓库地址:https://github.com/DataShare-duo/polars_learn

小编运行环境

import sysprint('python 版本:',sys.version.split('|')[0])
#python 版本: 3.11.5 import polars as plprint("polars 版本:",pl.__version__)
#polars 版本: 0.20.22

数据类型转换

数据类型转换,主要是通过 cast 方法来进行操作,该方法中有个参数 strict ,该参数决定当原数据类型不能转换为目标数据类型时,应该如何处理

  • 严格模式, strict=True(该参数默认是True),就会进行报错,打印出详细的错误信息
  • 非严格模式, strict=False ,不会报错,无法转换为目标数据类型的值都会被置为 null

pandas 中数据类型转换使用的是 astype 方法

示例

数值类型 Numerics
浮点型数值转换为整型时,会向下取整;大范围的数据类型转换为小范围数据类型时,如果数值溢出时,默认会报错,如果设置了 strict=False,则会被置为 null

df = pl.DataFrame({"integers": [1, 2, 3, 4, 5],"big_integers": [1, 10000002, 3, 10000004, 10000005],"floats": [4.0, 5.0, 6.0, 7.0, 8.0],"floats_with_decimal": [4.532, 5.5, 6.5, 7.5, 8.5],}
)print(df)
shape: (5, 4)
┌──────────┬──────────────┬────────┬─────────────────────┐
│ integers ┆ big_integers ┆ floats ┆ floats_with_decimal │
│ ------------                 │
│ i64      ┆ i64          ┆ f64    ┆ f64                 │
╞══════════╪══════════════╪════════╪═════════════════════╡
│ 114.04.532               │
│ 2100000025.05.5                 │
│ 336.06.5                 │
│ 4100000047.07.5                 │
│ 5100000058.08.5                 │
└──────────┴──────────────┴────────┴─────────────────────┘out=df.select(pl.col("integers").cast(pl.Float32).alias("integers_as_floats"),pl.col("floats").cast(pl.Int32).alias("floats_as_integers"),pl.col("floats_with_decimal").cast(pl.Int32).alias("floats_with_decimal_as_integers"))print(out)
shape: (5, 3)
┌────────────────────┬────────────────────┬─────────────────────────────────┐
│ integers_as_floats ┆ floats_as_integers ┆ floats_with_decimal_as_integers │
│ ---------                             │
│ f32                ┆ i32                ┆ i32                             │
╞════════════════════╪════════════════════╪═════════════════════════════════╡
│ 1.044                               │
│ 2.055                               │
│ 3.066                               │
│ 4.077                               │
│ 5.088                               │
└────────────────────┴────────────────────┴─────────────────────────────────┘#如果不溢出的类型转换,可以节省内存
out=df.select(pl.col("integers").cast(pl.Int16).alias("integers_smallfootprint"),pl.col("floats").cast(pl.Float32).alias("floats_smallfootprint"),)print(out)
shape: (5, 2)
┌─────────────────────────┬───────────────────────┐
│ integers_smallfootprint ┆ floats_smallfootprint │
│ ------                   │
│ i16                     ┆ f32                   │
╞═════════════════════════╪═══════════════════════╡
│ 14.0                   │
│ 25.0                   │
│ 36.0                   │
│ 47.0                   │
│ 58.0                   │
└─────────────────────────┴───────────────────────┘try:out = df.select(pl.col("big_integers").cast(pl.Int8))print(out)
except Exception as e:print(e)
#conversion from `i64` to `i8` failed in column 'big_integers' for 3 out of 5 values: [10000002, 10000004, 10000005]out=df.select(pl.col("big_integers").cast(pl.Int8, strict=False))
print(out)
shape: (5, 1)
┌──────────────┐
│ big_integers │
│ ---          │
│ i8           │
╞══════════════╡
│ 1            │
│ null         │
│ 3            │
│ null         │
│ null         │
└──────────────┘

字符串类型 Strings

df = pl.DataFrame({"integers": [1, 2, 3, 4, 5],"float": [4.0, 5.03, 6.0, 7.0, 8.0],"floats_as_string": ["4.0", "5.0", "6.0", "7.0", "8.0"],}
)print(df)
shape: (5, 3)
┌──────────┬───────┬──────────────────┐
│ integers ┆ float ┆ floats_as_string │
│ ---------              │
│ i64      ┆ f64   ┆ str              │
╞══════════╪═══════╪══════════════════╡
│ 14.04.0              │
│ 25.035.0              │
│ 36.06.0              │
│ 47.07.0              │
│ 58.08.0              │
└──────────┴───────┴──────────────────┘out=df.select(pl.col("integers").cast(pl.String),pl.col("float").cast(pl.String),pl.col("floats_as_string").cast(pl.Float64),)print(out)
shape: (5, 3)
┌──────────┬───────┬──────────────────┐
│ integers ┆ float ┆ floats_as_string │
│ ---------              │
│ strstr   ┆ f64              │
╞══════════╪═══════╪══════════════════╡
│ 14.04.0              │
│ 25.035.0              │
│ 36.06.0              │
│ 47.07.0              │
│ 58.08.0              │
└──────────┴───────┴──────────────────┘df = pl.DataFrame({"strings_not_float": ["4.0", "not_a_number", "6.0", "7.0", "8.0"]})
print(df)
shape: (5, 1)
┌───────────────────┐
│ strings_not_float │
│ ---               │
│ str               │
╞═══════════════════╡
│ 4.0               │
│ not_a_number      │
│ 6.0               │
│ 7.0               │
│ 8.0               │
└───────────────────┘#运行会报错
out=df.select(pl.col("strings_not_float").cast(pl.Float64))#设置非严格模式,忽略错误,置为null
out=df.select(pl.col("strings_not_float").cast(pl.Float64,strict=False))
print(out)
shape: (5, 1)
┌───────────────────┐
│ strings_not_float │
│ ---               │
│ f64               │
╞═══════════════════╡
│ 4.0               │
│ null              │
│ 6.0               │
│ 7.0               │
│ 8.0               │
└───────────────────┘

布尔类型 Booleans
数值型与布尔型可以相互转换,但是不允许字符型转换为布尔型

df = pl.DataFrame({"integers": [-1, 0, 2, 3, 4],"floats": [0.0, 1.0, 2.0, 3.0, 4.0],"bools": [True, False, True, False, True],}
)print(df)
shape: (5, 3)
┌──────────┬────────┬───────┐
│ integers ┆ floats ┆ bools │
│ ---------   │
│ i64      ┆ f64    ┆ bool  │
╞══════════╪════════╪═══════╡
│ -10.0    ┆ true  │
│ 01.0    ┆ false │
│ 22.0    ┆ true  │
│ 33.0    ┆ false │
│ 44.0    ┆ true  │
└──────────┴────────┴───────┘out=df.select(pl.col("integers").cast(pl.Boolean), pl.col("floats").cast(pl.Boolean))
print(out)
shape: (5, 2)
┌──────────┬────────┐
│ integers ┆ floats │
│ ------    │
│ boolbool   │
╞══════════╪════════╡
│ true     ┆ false  │
│ false    ┆ true   │
│ true     ┆ true   │
│ true     ┆ true   │
│ true     ┆ true   │
└──────────┴────────┘

时间类型 Dates
DateDatetime 等时间数据类型表示为自纪元(1970年1月1日)以来的天数(Date)和微秒数(Datetime),因此数值类型与时间数据类型能直接相互转换

字符串类型与时间类型,可以通过 dt.to_string、str.to_datetime进行相互转换

from datetime import date, datetimedf = pl.DataFrame({"date": pl.date_range(date(2022, 1, 1), date(2022, 1, 5), eager=True),"datetime": pl.datetime_range(datetime(2022, 1, 1), datetime(2022, 1, 5), eager=True),}
)print(df)
shape: (5, 2)
┌────────────┬─────────────────────┐
│ date       ┆ datetime            │
│ ------                 │
│ date       ┆ datetime[μs]        │
╞════════════╪═════════════════════╡
│ 2022-01-012022-01-01 00:00:00 │
│ 2022-01-022022-01-02 00:00:00 │
│ 2022-01-032022-01-03 00:00:00 │
│ 2022-01-042022-01-04 00:00:00 │
│ 2022-01-052022-01-05 00:00:00 │
└────────────┴─────────────────────┘out=df.select(pl.col("date").cast(pl.Int64),pl.col("datetime").cast(pl.Int64))print(out)
shape: (5, 2)
┌───────┬──────────────────┐
│ date  ┆ datetime         │
│ ------              │
│ i64   ┆ i64              │
╞═══════╪══════════════════╡
│ 189931640995200000000 │
│ 189941641081600000000 │
│ 189951641168000000000 │
│ 189961641254400000000 │
│ 189971641340800000000 │
└───────┴──────────────────┘df = pl.DataFrame({"date": pl.date_range(date(2022, 1, 1), date(2022, 1, 5), eager=True),"string": ["2022-01-01","2022-01-02","2022-01-03","2022-01-04","2022-01-05",],}
)print(df)
shape: (5, 2)
┌────────────┬────────────┐
│ date       ┆ string     │
│ ------        │
│ date       ┆ str        │
╞════════════╪════════════╡
│ 2022-01-012022-01-01 │
│ 2022-01-022022-01-02 │
│ 2022-01-032022-01-03 │
│ 2022-01-042022-01-04 │
│ 2022-01-052022-01-05 │
└────────────┴────────────┘out=df.select(pl.col("date").dt.to_string("%Y-%m-%d"),pl.col("string").str.to_datetime("%Y-%m-%d"),pl.col("string").str.to_date("%Y-%m-%d").alias("string_to_data")
)print(out)
shape: (5, 3)
┌────────────┬─────────────────────┬────────────────┐
│ date       ┆ string              ┆ string_to_data │
│ ---------            │
│ str        ┆ datetime[μs]        ┆ date           │
╞════════════╪═════════════════════╪════════════════╡
│ 2022-01-012022-01-01 00:00:002022-01-01     │
│ 2022-01-022022-01-02 00:00:002022-01-02     │
│ 2022-01-032022-01-03 00:00:002022-01-03     │
│ 2022-01-042022-01-04 00:00:002022-01-04     │
│ 2022-01-052022-01-05 00:00:002022-01-05     │
└────────────┴─────────────────────┴────────────────┘

历史相关文章

  • Python polars学习-01 读取与写入文件
  • Python polars学习-02 上下文与表达式
  • Python pandas 里面的数据类型坑,astype要慎用
  • Python pandas.str.replace 不起作用

以上是自己实践中遇到的一些问题,分享出来供大家参考学习,欢迎关注微信公众号:DataShare ,不定期分享干货

这篇关于polars学习-03 数据类型转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986774

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名