数据科学:使用Optuna进行特征选择

2024-05-13 17:36

本文主要是介绍数据科学:使用Optuna进行特征选择,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,特征选择是机器学习流程中的关键步骤,在实践中通常有大量的变量可用作模型的预测变量,但其中只有少数与目标相关。特征选择包括找到这些特征的子集,主要用于改善泛化能力、助力推断预测、提高训练效率。有许多技术可用于执行特征选择,每种技术的复杂性不同。

本文将介绍一种使用强大的开源优化工具Optuna来执行特征选择任务的创新方法,主要思想是通过有效地测试不同的特征组合(例如,不是逐个尝试它们)来处理各种任务的特征选择的灵活工具。下面,将通过一个实际示例来实施这种方法,并将其与其他常见的特征选择策略进行比较。

1.数据准备

将利用基于Kaggle上的Mobile Price Classification数据集进行分类任务。该数据集包含20个特征,其中包括:'battery_power'、'clock_speed'和'ram' 等,用于预测'price_range'特征,该特征可以分为四个不同的价格范围:0、1、2和3。我们将数据集分成训练集和测试集,并在训练集中准备了一个5折交叉验证分割。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFoldSEED = 32
# Load data
df = pd.read_csv("mpc_train.csv")# Train - test split
df_train, df_test = train_test_split(df, test_size=0.2, stratify=df.iloc[:,-1], random_state=SEED)
df_train = df_train.reset_index(drop=True)
df_test = df_test.reset_index(drop=True)# The last column is the target variable
X_train = df_train.iloc[:,0:20]
y_train = df_train.iloc[:,-1]
X_test = df_test.iloc[:,0:20]
y_test = df_test.iloc[:,-1]# Stratified kfold over the train set for cross validation
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)
splits = list(skf.split(X_train, y_train))
len(splits)

将使用随机森林分类器模型,使用scikit-learn实现并采用默认参数。我们首先使用所有特征训练模型来设置基准。我们将测量的指标是针对所有四个价格范围加权的F1分数。在对训练集进行学习后,我们在测试集上对其进行评估,得到的F1分数约为0.87。

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import f1_score, classification_reportmodel = RandomForestClassifier(random_state=SEED)
model.fit(X_train,y_train)
preds = model.predict(X_test)print(classification_report(y_test, preds))
print(f"Global F1: {f1_score(y_test, preds, average='weighted')}")

特征选择的目标是通过选择一个较少的特征集来提高评估指标。首先将描述基于Optuna的方法如何工作,然后测试并将其与其他常见的特征选择策略进行比较。

2.用Optuna进行特征选择

Optuna是一个用于超参数调优的优化框架,采用贝叶斯优化技术搜索参数空间。与传统的网格或随机搜索相比,Optuna更高效。我们使用默认的TPESampler采样器,它基于Tree-structured Parzen Estimator算法(TPE)。

在特征选择的情况下,不是调整模型的超参数,而是选择特征。使用训练数据集,分成五个折交叉,在每次试验中训练模型并评估性能。目标是最大化F1分数,同时对使用的特征进行小惩罚以鼓励更小的特征集。

下面是执行特征选择搜索的实现类:

import optunaclass FeatureSelectionOptuna:"""This class implements feature selection using Optuna optimization framework.Parameters:- model (object): The predictive model to evaluate; this should be any object that implements fit() and predict() methods.- loss_fn (function): The loss function to use for evaluating the model performance. This function should take the true labels and thepredictions as inputs and return a loss value.- features (list of str): A list containing the names of all possible features that can be selected for the model.- X (DataFrame): The complete set of feature data (pandas DataFrame) from which subsets will be selected for training the model.- y (Series): The target variable associated with the X data (pandas Series).- splits (list of tuples): A list of tuples where each tuple contains two elements, the train indices and the validation indices.- penalty (float, optional): A factor used to penalize the objective function based on the number of features used."""def __init__(self,model,loss_fn,features,X,y,splits,penalty=0):self.model = modelself.loss_fn = loss_fnself.features = featuresself.X = Xself.y = yself.splits = splitsself.penalty = penaltydef __call__(self,trial: optuna.trial.Trial):# Select True / False for each featureselected_features = [trial.suggest_categorical(name, [True, False]) for name in self.features]# List with names of selected featuresselected_feature_names = [name for name, selected in zip(self.features, selected_features) if selected]# Optional: adds a penalty for the amount of features usedn_used = len(selected_feature_names)total_penalty = n_used * self.penaltyloss = 0for split in self.splits:train_idx = split[0]valid_idx = split[1]X_train = self.X.iloc[train_idx].copy()y_train = self.y.iloc[train_idx].copy()X_valid = self.X.iloc[valid_idx].copy()y_valid = self.y.iloc[valid_idx].copy()X_train_selected = X_train[selected_feature_names].copy()X_valid_selected = X_valid[selected_feature_names].copy()# Train model, get predictions and accumulate lossself.model.fit(X_train_selected, y_train)pred = self.model.predict(X_valid_selected)loss += self.loss_fn(y_valid, pred)# Take the average loss across all splitsloss /= len(self.splits)# Add the penalty to the lossloss += total_penaltyreturn loss

将每个特征视为一个参数,可以取True或False值,表示是否应该将该特征包含在模型中。使用suggest_categorical方法,让Optuna为每个特征选择两个可能的值之一。

初始化Optuna研究并进行100次试验的搜索,将第一个试验排入队列,使用所有特征作为搜索的起点,允许Optuna将后续试验与完全特征模型进行比较:

from optuna.samplers import TPESamplerdef loss_fn(y_true, y_pred):"""Returns the negative F1 score, to be treated as a loss function."""res = -f1_score(y_true, y_pred, average='weighted')return resfeatures = list(X_train.columns)model = RandomForestClassifier(random_state=SEED)sampler = TPESampler(seed = SEED)
study = optuna.create_study(direction="minimize",sampler=sampler)# We first try the model using all features
default_features = {ft: True for ft in features}
study.enqueue_trial(default_features)study.optimize(FeatureSelectionOptuna(model=model,loss_fn=loss_fn,features=features,X=X_train,y=y_train,splits=splits,penalty = 1e-4,), n_trials=100)

完成了100次试验后,从研究中获取最佳试验和其中使用的特征,如下所示:

[‘battery_power’, ‘blue’, ‘dual_sim’, ‘fc’, ‘mobile_wt’, ‘px_height’, ‘px_width’, ‘ram’, ‘sc_w’]

上述过程从原始的20个特征中,搜索最终只选出了其中的9个特征变量,这是一个显著的减少。这些特征产生了约为-0.9117的最小验证损失,这意味着它们在所有折叠中实现了约为0.9108的平均F1分数(在考虑到惩罚项后)。

下一步是使用这些选定的特征在整个训练集上训练模型,并在测试集上对其进行评估。结果是约为0.882的F1分数:

# Train - test split
c=['battery_power', 'blue', 'dual_sim', 'fc', 'mobile_wt', 'px_height', 'px_width', 'ram', 'sc_w','price_range']
df_c=df[c]
df_train, df_test = train_test_split(df_c, test_size=0.2, stratify=df.iloc[:,-1], random_state=SEED)
df_train = df_train.reset_index(drop=True)
df_test = df_test.reset_index(drop=True)# The last column is the target variable
X_train = df_train.iloc[:,0:9]
y_train = df_train.iloc[:,-1]
X_test = df_test.iloc[:,0:9]
y_test = df_test.iloc[:,-1]# Stratified kfold over the train set for cross validation
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)
splits = list(skf.split(X_train, y_train))model = RandomForestClassifier(random_state=SEED)
model.fit(X_train,y_train)
preds = model.predict(X_test)print(classification_report(y_test, preds))
print(f"Global F1: {f1_score(y_test, preds, average='weighted')}")

通过选择合适的特征组合,能够将特征集减少了一半以上,同时仍然实现了比全特征集更高的F1分数。下面是Optuna进行特征选择的一些优缺点:

优点:

  • 高效地搜索特征集,考虑了哪些特征组合最有可能产生良好的结果。

  • 适用于许多场景:只要有模型和损失函数,我们就可以用它来处理任何特征选择任务。

  • 看到了整体情况:与评估单个特征的方法不同,Optuna考虑了哪些特征彼此之间往往配合得好,哪些不好。

  • 作为优化过程的一部分动态确定特征数量。这可以通过惩罚项进行调节。

缺点:

  • 与简单方法相比,不那么直观,对于较小和较简单的数据集可能不值得使用。

  • 尽管与其他方法(如穷举搜索)相比需要的试验次数要少得多,但通常仍需要大约100到1000次试验。根据模型和数据集的不同,这可能耗时且计算成本高昂。

3.其他特征选择方法

SelectKBest是scikit-learn库中的一个特征选择工具,用于选择与目标变量相关性最高的k个特征。它基于给定的评分函数对每个特征进行评分,并返回得分最高的k个特征。这个工具通常用于过滤方法中,它不需要构建模型,而是直接对特征进行评估和选择。通过选择与目标变量高度相关的特征,SelectKBest可以帮助提高模型的预测性能和泛化能力。

from sklearn.feature_selection import SelectKBest, chi2
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
SEED = 32
# Load data
df = pd.read_csv("mpc_train.csv")# Train - test split
df_train, df_test = train_test_split(df, test_size=0.2, stratify=df.iloc[:,-1], random_state=SEED)
df_train = df_train.reset_index(drop=True)
df_test = df_test.reset_index(drop=True)# The last column is the target variable
X_train = df_train.iloc[:,0:20]
y_train = df_train.iloc[:,-1]
X_test = df_test.iloc[:,0:20]
y_test = df_test.iloc[:,-1]skb = SelectKBest(score_func=chi2, k=10)
X_train_selected = skb.fit_transform(X_train, y_train)
X_test_selected = skb.transform(X_test)# Train Random Forest Classifier
model = RandomForestClassifier(random_state=SEED)
model.fit(X_train_selected, y_train)# Predictions
preds = model.predict(X_test_selected)# Evaluation
print(classification_report(y_test, preds))
print(f"Global F1: {f1_score(y_test, preds, average='weighted')}")

通过上述对比,可以看出通过Optuna进行特征选择有更高的效率和更好的性能指标。使用Optuna这一强大的优化工具来进行特征选择任务,通过有效地搜索空间,它能够在相对较少的试验中找到好的特征子集。而且它还具有灵活性,并且只要定义模型和损失函数,可以适应许多场景。

这篇关于数据科学:使用Optuna进行特征选择的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986370

相关文章

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain