自定义数据集图像分类实现

2024-05-13 04:52

本文主要是介绍自定义数据集图像分类实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型训练
要使用自己的图片分类数据集进行训练,这意味着数据集应该包含一个目录,其中每个子目录代表一个类别,子目录中包含该类别的所有图片。以下是一个使用Keras和TensorFlow加载自定义图片数据集进行分类训练的例子。
我们自己创建的数据集结构如下:

data/train/class1/img1.jpgimg2.jpg...class2/imga.jpgimgb.jpg......validation/class1/img3.jpgimg4.jpg...class2/imgc.jpgimgd.jpg......

以下是训练模型的代码:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 定义数据集的路径
train_data_path = 'data/train'
validation_data_path = 'data/validation'
# 设置图片大小
img_height = 150
img_width = 150
# 创建ImageDataGenerator实例
train_datagen = ImageDataGenerator(rescale=1./255,rotation_range=40,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
# 使用ImageDataGenerator读取数据
train_generator = train_datagen.flow_from_directory(train_data_path,target_size=(img_height, img_width),batch_size=32,class_mode='categorical'
)
validation_generator = validation_datagen.flow_from_directory(validation_data_path,target_size=(img_height, img_width),batch_size=32,class_mode='categorical'
)
# 创建CNN模型
model = Sequential([Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),MaxPooling2D(2, 2),Conv2D(64, (3, 3), activation='relu'),MaxPooling2D(2, 2),Conv2D(128, (3, 3), activation='relu'),MaxPooling2D(2, 2),Flatten(),Dense(512, activation='relu'),Dropout(0.5),Dense(train_generator.num_classes, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
# 训练模型
history = model.fit(train_generator,steps_per_epoch=train_generator.samples // train_generator.batch_size,epochs=50,validation_data=validation_generator,validation_steps=validation_generator.samples // validation_generator.batch_size
)
# 保存模型
model.save('my_model.h5')

在这个例子中,我们首先定义了训练和验证数据的路径,然后创建了ImageDataGenerator实例来处理图片增强和归一化。接着,我们使用flow_from_directory方法从目录中读取图片数据,并生成批量数据供模型训练使用。然后,我们创建了一个简单的CNN模型,并使用训练和验证数据进行了训练。最后,我们将训练好的模型保存为my_model.h5文件。

模型使用

import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
import os
# 加载训练好的模型
model = tf.keras.models.load_model('my_model.h5')
# 定义包含图片的目录
img_directory = 'path_to_directory_with_images'
# 创建ImageDataGenerator实例来获取类别的顺序
datagen = ImageDataGenerator()
generator = datagen.flow_from_directory('path_to_training_data_directory',  # 训练数据所在的目录target_size=(150, 150),batch_size=32,class_mode='categorical'
)
# 获取类别到索引的映射
class_indices = generator.class_indices
# 反转映射,从索引到类别名称
inverse_map = {v: k for k, v in class_indices.items()}
# 加载所有图片并进行预处理
img_paths = [os.path.join(img_directory, f) for f in os.listdir(img_directory) if f.endswith(('.png', '.jpg', '.jpeg'))]
img_arrays = [image.load_img(img_path, target_size=(150, 150)) for img_path in img_paths]  # 确保这个尺寸与训练时使用的尺寸一致
img_arrays = [image.img_to_array(img) for img in img_arrays]
img_arrays = [img / 255.0 for img in img_arrays]  # 归一化
img_array = np.array(img_arrays)
# 使用模型进行预测
predictions = model.predict(img_array)
# 将预测结果转换为类别索引
predicted_classes = np.argmax(predictions, axis=-1)
# 打印预测结果
for i, img_path in enumerate(img_paths):class_index = predicted_classes[i]class_name = inverse_map[class_index]print(f"Image: {img_path}, Predicted class: {class_name}")

我们首先创建了ImageDataGenerator实例并使用了flow_from_directory方法来获取类别到索引的映射。然后,我们将这个映射反转,以便可以从索引得到类别名称。在预测完成后,我们使用predicted_classes中的索引通过inverse_map来获取每个图片对应的类别名称,并打印出来。
请确保path_to_training_data_directory是训练数据所在的目录,这样类别顺序才是正确的。如果训练数据和测试数据不在同一个目录下,你需要确保测试数据的类别顺序与训练数据相同。

这篇关于自定义数据集图像分类实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984731

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

雨量传感器的分类和选型建议

物理原理分类 机械降雨量计(雨量桶):最早使用的降雨量传感器,通过漏斗收集雨水并记录。主要用于长期降雨统计,故障率较低。电容式降雨量传感器:基于两个电极之间的电容变化来计算降雨量。当降雨时,水滴堵住电极空间,改变电容值,从而计算降雨量。超声波式降雨量传感器:利用超声波的反射来计算降雨量。适用于大降雨量的场合。激光雷达式降雨量传感器:利用激光技术测量雨滴的速度、大小和形状等参数,并计算降雨量。主

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

利用Frp实现内网穿透(docker实现)

文章目录 1、WSL子系统配置2、腾讯云服务器安装frps2.1、创建配置文件2.2 、创建frps容器 3、WSL2子系统Centos服务器安装frpc服务3.1、安装docker3.2、创建配置文件3.3 、创建frpc容器 4、WSL2子系统Centos服务器安装nginx服务 环境配置:一台公网服务器(腾讯云)、一台笔记本电脑、WSL子系统涉及知识:docker、Frp