IB 公式解析

2024-05-13 02:12
文章标签 公式 解析 ib

本文主要是介绍IB 公式解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公式

3.2. Influence Function

影响函数允许我们在移除样本时估计模型参数的变化,而无需实际移除数据并重新训练模型。

 3.3 影响平衡加权因子

 3.4 影响平衡损失

 3.5 类内重加权

m代表一个批次(batch)的大小,这意味着公式对一个批次中的所有样本进行计算,然后去平均值。

 代码

criterion_ib = IBLoss(weight=per_cls_weights, alpha=1000).cuda()
def ib_loss(input_values, ib):"""Computes the focal loss"""loss = input_values * ibreturn loss.mean()
class IBLoss(nn.Module):def __init__(self, weight=None, alpha=10000.):super(IBLoss, self).__init__()assert alpha > 0self.alpha = alphaself.epsilon = 0.001self.weight = weightdef forward(self, input, target, features):grads = torch.sum(torch.abs(F.softmax(input, dim=1) - F.one_hot(target, num_classes)),1) # N * 1ib = grads * features.reshape(-1)ib = self.alpha / (ib + self.epsilon)return ib_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), ib)

1.计算梯度 grads

grads = torch.sum(torch.abs(F.softmax(input, dim=1) - F.one_hot(target, num_classes)), 1) # N * 1
  • 计算 softmax 概率分布F.softmax(input, dim=1) 将模型的输出转换为概率分布。
  • 计算 one-hot 编码F.one_hot(target, num_classes) 将目标标签转换为 one-hot 编码。
  • 计算绝对差值:通过计算 softmax 输出与 one-hot 编码之间的绝对差值,得到每个样本的梯度,表示样本对模型的损失贡献。

 2. 计算影响平衡因子(IB Factor)

ib = grads * features.reshape(-1)
ib = self.alpha / (ib + self.epsilon)

影响平衡因子(IB Factor)确实与梯度成反比。梯度越大,IB因子越小,分配给该样本的权重越小;梯度越小,IB因子越大,分配给该样本的权重越大。这一机制确保了模型在处理不平衡数据时,能够更有效地减小对多数类样本的过拟合,提升对少数类样本的泛化能力。

 3. 计算最终损失

return ib_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), ib)

将论文中的公式与代码对应起来

论文中的公式:

对应代码

首先,我们来看影响平衡损失 IBLoss 的代码实现:

class IBLoss(nn.Module):def __init__(self, weight=None, alpha=10000.):super(IBLoss, self).__init__()assert alpha > 0self.alpha = alphaself.epsilon = 0.001self.weight = weightdef forward(self, input, target, features):grads = torch.sum(torch.abs(F.softmax(input, dim=1) - F.one_hot(target, num_classes)), 1) # N * 1ib = grads * features.reshape(-1)ib = self.alpha / (ib + self.epsilon)return ib_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), ib)

对应关系

  1. 批次大小 m

    在代码中,批次大小由 train_loadertest_loader 的批次大小参数决定。

  2. 数据集 𝐷𝑚

    代码中的 train_loadertest_loader 提供了批次数据。

  3. 类别权重因子 𝜆𝑘

    在代码中,通过 per_cls_weights 来实现:

per_cls_weights = 1.0 / np.array(cls_num_list)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda()

4.基本损失函数 𝐿(𝑦,𝑓(𝑥,𝑤))

代码中使用 torch.nn.CrossEntropyLoss 计算交叉熵损失:

base_loss = F.cross_entropy(input, target, reduction='none', weight=self.weight)

5.模型输出 𝑓(𝑥,𝑤)f(x,w)

在代码中,模型的输出为 input

output, features = model(images)

6.模型输出与真实标签的 L1 范数 ∥𝑓(𝑥,𝑤)−𝑦∥1

在代码中,通过以下方式计算:

grads = torch.sum(torch.abs(F.softmax(input, dim=1) - F.one_hot(target, num_classes)), 1) # N * 1

7.隐藏层特征向量 ℎ 和其 L1 范数 ∥ℎ∥1**

在代码中,通过以下方式计算隐藏层特征向量的 L1 范数:

features = torch.sum(torch.abs(feats), 1).reshape(-1, 1)

8.最终影响平衡因子 IB

在代码中,通过以下方式计算:

ib = grads * features.reshape(-1)
ib = self.alpha / (ib + self.epsilon)

 9.最终影响平衡损失 𝐿IB(𝑤)

通过自定义的 ib_loss 函数计算:

return ib_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), ib)

 为什么类别权重因子要这样实现

per_cls_weights = 1.0 / np.array(cls_num_list)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda()

类别权重因子的实现旨在通过加权样本来处理类别不平衡问题。以下是详细解释为什么要这样实现 per_cls_weights 以及每一步的作用:

代码实现

per_cls_weights = 1.0 / np.array(cls_num_list)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda()

每一步的解释

计算每个类别的逆频率

per_cls_weights = 1.0 / np.array(cls_num_list)
  • cls_num_list 是每个类别的样本数量列表。例如,如果有三个类别,且每个类别的样本数量为 [100, 200, 50],则 cls_num_list = [100, 200, 50]
  • 通过取倒数 1.0 / np.array(cls_num_list),我们得到了每个类别的逆频率。例如,结果将是 [0.01, 0.005, 0.02]
  • 逆频率反映了类别数量的稀少程度,样本数量少的类别(少数类)将得到更高的权重。

归一化权重

per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
  • 首先,计算权重的总和 np.sum(per_cls_weights)。根据前面的例子,总和为 0.01 + 0.005 + 0.02 = 0.035
  • 然后,将每个类别的权重除以总和,使得所有权重的和为 1。这是标准化步骤,使得权重变为 [0.01/0.035, 0.005/0.035, 0.02/0.035],即 [0.2857, 0.1429, 0.5714]
  • 接下来,将这些标准化权重乘以类别的数量 len(cls_num_list)。在这个例子中,类别数量是 3。因此,最终的权重变为 [0.2857*3, 0.1429*3, 0.5714*3],即 [0.8571, 0.4286, 1.7143]

这一步的作用是确保每个类别的权重和类别数量成正比,同时保持权重的总和为类别数量。

转换为 PyTorch 张量

per_cls_weights = torch.FloatTensor(per_cls_weights).cuda()
  • 将 NumPy 数组转换为 PyTorch 张量,以便在 PyTorch 中使用这些权重。
  • 将权重张量移动到 GPU(如果可用),以加速计算。

归一化步骤的原因

归一化权重的目的是确保类别权重的相对比例合理,并且所有权重的总和与类别数量一致。这有助于避免某些类别被赋予过高或过低的权重,从而确保训练过程中的稳定性和效果。

处理类别不平衡的原因

类别不平衡问题是指在数据集中,不同类别的样本数量差异很大。在这种情况下,传统的损失函数往往会被多数类主导,导致模型在少数类上的性能较差。通过加权样本,特别是对少数类样本赋予更高的权重,可以平衡各类样本对损失的贡献,从而改善模型在少数类上的表现。

总结

  • 逆频率权重:通过取样本数量的倒数,使得样本数量少的类别得到更高的权重。
  • 归一化:将权重标准化,并确保权重的总和与类别数量一致,保持权重比例的合理性。
  • 转换为张量:将权重转换为 PyTorch 张量,以便在训练过程中使用。

这种权重计算方法确保了在处理类别不平衡问题时,少数类样本对损失函数的贡献增加,从而提高模型对少数类的识别能力。

这篇关于IB 公式解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984393

相关文章

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用