基于Spark实现的超大矩阵运算

2024-05-12 23:48

本文主要是介绍基于Spark实现的超大矩阵运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于标题强调了是在Spark平台实现的矩阵运算,所以本文会非常有针对性的介绍,甚至细节到Spark RDD的算子。

1.算法描述

思想其实很简单,就是矩阵分块计算,而分块矩阵就成了小矩阵,然后就借助于Breeze实现。而对于Spark平台而言,其处理流程如下图:


2.矩阵分块依据

这里仅仅提供一种思路,所以仅供参考。假设有两个矩阵A和B,其中A是m*k的矩阵,B是k*n的矩阵,CPU的总核数是cores,则分块方法:

  • m > k && m > n --> m/2 && cores/2
  • k > m && k > n --> k/2 && cores/2
  • n > k && n > m --> n/2 && cores/2

3.分块矩阵ID标识:BlockID

由于BlockID最后要依靠RDD在集群中通信传输,所以BlockID必须是可序列化的。另外,BlockID要作为分块矩阵的唯一标识,所以BlockID必须具有唯一性,而BlockID的唯一由一下3个属性确定:

  • blockRow:表示该子/分块矩阵在原矩阵中的行号;
  • blockCol:表示该子/分块矩阵在原矩阵中的列号;
  • blockSeq:表示该子/分块矩阵的序列号,默认为0。

4.矩阵分块原理

由于Spark处理文件时,是一行一行的处理的,所以一开始读文件,构成的RDD的类型是:RDD[(seqnum, DenseVector)] (seqnum:输入的行号,DenseVector:对应seqnum的矩阵行)。同时,我们还需要知道2个数据:

  • allrow:矩阵的总行数
  • allcol:矩阵的总列数
另外,由于矩阵运算中,矩阵形状的不同,所以分块的方式也随之而异。如下图,左上图就需要按列分块,右上图就需要按行分块,左下图就需要行列都分块,右下图就需要分别按列分块和按行分块。


4.1按行分块,列不分块

这时需要知道以下2个数据:

  • rowblocknum:按行分块的数量
  • subrow:每块矩阵的行数
然后,分三步处理:

①mapPartitions{map}将RDD[(seqnum, DenseVector)]组成新的数据结构:RDD[(seqnum/subrow, (seqnum, DenseVector))]
②groupByKey作用RDD[(seqnum/subrow, (seqnum, DenseVector))]得到新的数据结构RDD[(seqnum/subrow, Iterable[(seqnum, DenseVector)])]

e.g.
allrow = 1000, rowblocknum = 5, subrow = allrow/rowblocknum = 200

③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]

4.2按行按列分块,和按列分块行不分

这时,我们需要知道3个数据,和准备一个存储行向量的数组:
  • element: Array 读入的每行数据
  • subcol: 每块矩阵的列数
  • colblocknum:按列分块的数量
  • arrayBuff: ArrayBuffer[(BlockID, (Long, Vector))] 存储按列切分的行向量
①mapPartitions{flatMap}将输入的每行数据按列切分,存储到arrayBuff: ArrayBuffer[(BlockID, (Long, Vector))]
②groupByKey作用RDD[(BlockID, (Long, Vector))]得到新的数据结构RDD[(BlockID, Iterable[(seqnum, DenseVector)])]
e.g.
allrow = 1000, rowblocknum = 5, subrow = allrow/rowblocknum = 200
allcol = 1000, colblocknum = 5, subcol = allcol/colblocknum = 200

③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]

5.矩阵乘法的例子

例如:有两个矩阵A和B,其中A是6m*4k的矩阵,被分为3*2块个子矩阵;B是4k*4n的矩阵,被分为2*2块的子矩阵。如图:


下标(x,y,z)是每个子/分块矩阵的唯一标识BlockID(row: Int, col: Int, seq: Int = 0)的参数,即:

  • x:表示该子/分块矩阵在原矩阵中的行号,即blockRow;
  • y:表示该子/分块矩阵在原矩阵中的列号,即blockCol;
  • z:表示该子/分块矩阵的序列号,默认为0,即blockSeq。
和分块块数:
  • mSplitNum:表示矩阵A按行切分的块数;
  • kSplitNum:表示矩阵A按列切分的块数,也是矩阵B按行切分的块数;
  • nSplitNum:表示矩阵B按列切分的块数。
对于该例子,mSplitNum=3、kSplitNum=2、nSplitNum=2。
①mapPartitions{flatMap}把RDD[(BlockID, submatrix)],即矩阵A的每个子/分块矩阵按序列号生成nSplitNum个RDD[(BlockID, submatrix)],矩阵B的每个子/分块矩阵按序列号生成mSplitNum个RDD[(BlockID, subMatrix)],使之一一对应。
对于矩阵A
val array = Array.ofDim[(BlockID, DenseMatrix[Double])](nSplitNum)for (i <- 0 until nSplitNum) {val blockSeq = blockRow * nSplitNum * kSplitNum + i * kSplitNum + blockColarray(i) = (new BlockID(blockRow, i, blockSeq), DenseMatrix)
}

对于矩阵B

val array = Array.ofDim[(BlockID, DenseMatrix [Double])](mSplitNum)for (i <- 0 until mSplitNum) {val blockSeq = i * nSplitNum * kSplitNum + blockCol * kSplitNum + blockRowarray(i) = (new BlockID(i, blockCol, blockSeq), DenseMatrix)
}

e.g. mSplitNum=3,kSplitNum=2,nSplitNum=2
MatrixA

MatrixB


即:MatrixA每个子/分块矩阵复制nSplitNum份,MatrixB每个子/分块矩阵复制mSplitNum份,然后把Key值BlockID相同的子/分块矩阵相乘。
②join两矩阵A和B,使每一对subMatrix相乘,同时更新BlockID(blockRow, blockCol)使blockSeq默认为0。
③reduceByKey按BlockID把子/分块矩阵的乘积相加,得到最终的矩阵。


声明:这只是个人思想,仅做参考。按照这个想法,如果不做任何优化(比如,相乘的小矩阵不分块,而是采用广播的方式等等),在我的实验集群中好像最多能处理10000*10000*10000规模的数据集。


参考文献:

http://www.open-open.com/doc/view/dc6d0ce0233d4db397fd677a2d0a55dc

这篇关于基于Spark实现的超大矩阵运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984081

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import