基于Spark实现的超大矩阵运算

2024-05-12 23:48

本文主要是介绍基于Spark实现的超大矩阵运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于标题强调了是在Spark平台实现的矩阵运算,所以本文会非常有针对性的介绍,甚至细节到Spark RDD的算子。

1.算法描述

思想其实很简单,就是矩阵分块计算,而分块矩阵就成了小矩阵,然后就借助于Breeze实现。而对于Spark平台而言,其处理流程如下图:


2.矩阵分块依据

这里仅仅提供一种思路,所以仅供参考。假设有两个矩阵A和B,其中A是m*k的矩阵,B是k*n的矩阵,CPU的总核数是cores,则分块方法:

  • m > k && m > n --> m/2 && cores/2
  • k > m && k > n --> k/2 && cores/2
  • n > k && n > m --> n/2 && cores/2

3.分块矩阵ID标识:BlockID

由于BlockID最后要依靠RDD在集群中通信传输,所以BlockID必须是可序列化的。另外,BlockID要作为分块矩阵的唯一标识,所以BlockID必须具有唯一性,而BlockID的唯一由一下3个属性确定:

  • blockRow:表示该子/分块矩阵在原矩阵中的行号;
  • blockCol:表示该子/分块矩阵在原矩阵中的列号;
  • blockSeq:表示该子/分块矩阵的序列号,默认为0。

4.矩阵分块原理

由于Spark处理文件时,是一行一行的处理的,所以一开始读文件,构成的RDD的类型是:RDD[(seqnum, DenseVector)] (seqnum:输入的行号,DenseVector:对应seqnum的矩阵行)。同时,我们还需要知道2个数据:

  • allrow:矩阵的总行数
  • allcol:矩阵的总列数
另外,由于矩阵运算中,矩阵形状的不同,所以分块的方式也随之而异。如下图,左上图就需要按列分块,右上图就需要按行分块,左下图就需要行列都分块,右下图就需要分别按列分块和按行分块。


4.1按行分块,列不分块

这时需要知道以下2个数据:

  • rowblocknum:按行分块的数量
  • subrow:每块矩阵的行数
然后,分三步处理:

①mapPartitions{map}将RDD[(seqnum, DenseVector)]组成新的数据结构:RDD[(seqnum/subrow, (seqnum, DenseVector))]
②groupByKey作用RDD[(seqnum/subrow, (seqnum, DenseVector))]得到新的数据结构RDD[(seqnum/subrow, Iterable[(seqnum, DenseVector)])]

e.g.
allrow = 1000, rowblocknum = 5, subrow = allrow/rowblocknum = 200

③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]

4.2按行按列分块,和按列分块行不分

这时,我们需要知道3个数据,和准备一个存储行向量的数组:
  • element: Array 读入的每行数据
  • subcol: 每块矩阵的列数
  • colblocknum:按列分块的数量
  • arrayBuff: ArrayBuffer[(BlockID, (Long, Vector))] 存储按列切分的行向量
①mapPartitions{flatMap}将输入的每行数据按列切分,存储到arrayBuff: ArrayBuffer[(BlockID, (Long, Vector))]
②groupByKey作用RDD[(BlockID, (Long, Vector))]得到新的数据结构RDD[(BlockID, Iterable[(seqnum, DenseVector)])]
e.g.
allrow = 1000, rowblocknum = 5, subrow = allrow/rowblocknum = 200
allcol = 1000, colblocknum = 5, subcol = allcol/colblocknum = 200

③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]

5.矩阵乘法的例子

例如:有两个矩阵A和B,其中A是6m*4k的矩阵,被分为3*2块个子矩阵;B是4k*4n的矩阵,被分为2*2块的子矩阵。如图:


下标(x,y,z)是每个子/分块矩阵的唯一标识BlockID(row: Int, col: Int, seq: Int = 0)的参数,即:

  • x:表示该子/分块矩阵在原矩阵中的行号,即blockRow;
  • y:表示该子/分块矩阵在原矩阵中的列号,即blockCol;
  • z:表示该子/分块矩阵的序列号,默认为0,即blockSeq。
和分块块数:
  • mSplitNum:表示矩阵A按行切分的块数;
  • kSplitNum:表示矩阵A按列切分的块数,也是矩阵B按行切分的块数;
  • nSplitNum:表示矩阵B按列切分的块数。
对于该例子,mSplitNum=3、kSplitNum=2、nSplitNum=2。
①mapPartitions{flatMap}把RDD[(BlockID, submatrix)],即矩阵A的每个子/分块矩阵按序列号生成nSplitNum个RDD[(BlockID, submatrix)],矩阵B的每个子/分块矩阵按序列号生成mSplitNum个RDD[(BlockID, subMatrix)],使之一一对应。
对于矩阵A
val array = Array.ofDim[(BlockID, DenseMatrix[Double])](nSplitNum)for (i <- 0 until nSplitNum) {val blockSeq = blockRow * nSplitNum * kSplitNum + i * kSplitNum + blockColarray(i) = (new BlockID(blockRow, i, blockSeq), DenseMatrix)
}

对于矩阵B

val array = Array.ofDim[(BlockID, DenseMatrix [Double])](mSplitNum)for (i <- 0 until mSplitNum) {val blockSeq = i * nSplitNum * kSplitNum + blockCol * kSplitNum + blockRowarray(i) = (new BlockID(i, blockCol, blockSeq), DenseMatrix)
}

e.g. mSplitNum=3,kSplitNum=2,nSplitNum=2
MatrixA

MatrixB


即:MatrixA每个子/分块矩阵复制nSplitNum份,MatrixB每个子/分块矩阵复制mSplitNum份,然后把Key值BlockID相同的子/分块矩阵相乘。
②join两矩阵A和B,使每一对subMatrix相乘,同时更新BlockID(blockRow, blockCol)使blockSeq默认为0。
③reduceByKey按BlockID把子/分块矩阵的乘积相加,得到最终的矩阵。


声明:这只是个人思想,仅做参考。按照这个想法,如果不做任何优化(比如,相乘的小矩阵不分块,而是采用广播的方式等等),在我的实验集群中好像最多能处理10000*10000*10000规模的数据集。


参考文献:

http://www.open-open.com/doc/view/dc6d0ce0233d4db397fd677a2d0a55dc

这篇关于基于Spark实现的超大矩阵运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984081

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主