基于YOLOV8复杂场景下船舶目标检测系统

2024-05-12 22:28

本文主要是介绍基于YOLOV8复杂场景下船舶目标检测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景

海洋作为地球上70%的表面积,承载着人类生活、经济发展和生态系统的重要功能。船舶作为海洋活动的主要载体之一,在海上运输、资源开发、环境监测等方面发挥着重要作用。复杂海洋环境下的船舶目标检测成为了海事管理、海洋资源开发和环境保护等领域的关键技术之一。

2. YOLOv8算法

为什么我应该使用 YOLOv8?

  • YOLOv8 具有许多开发人员方便的功能,从易于使用的 CLI 到结构良好的 Python 包。
  • YOLO 周围有一个庞大的社区,围绕 YOLOv8 模型的社区也在不断壮大,这意味着计算机视觉圈子里有很多人在你需要指导时可以为您提供帮助。YOLOv8在COCO上实现了很高的准确性。例如,YOLOv8m模型 - 中等模型 - 在COCO上测量时达到50.2%的mAP。当针对Roboflow 100(专门评估各种任务特定域上的模型性能的数据集)进行评估时,YOLOv8的得分明显优于YOLOv5。本文后面的性能分析中提供了有关此内容的更多信息。此外,YOLOv8 中方便开发人员的功能也很重要。与其他模型相反,任务被拆分到您可以执行的许多不同 Python 文件中,YOLOv8 带有一个 CLI,使训练模型更加直观。这是对 Python 包的补充,该包提供了比以前的模型更无缝的编码体验。当您考虑使用模型时,YOLO 周围的社区值得注意。许多计算机视觉专家都知道 YOLO 及其工作原理,并且网上有很多关于在实践中使用 YOLO 的指导。尽管 YOLOv8 在撰写本文时是新的,但网上有许多指南可以提供帮助。以下是一些学习资源,您可以使用它们来提高您对 YOLO 的了解:
  • Roboflow 模型上的 YOLOv8 模型卡
  • 如何在自定义数据集上训练YOLOv8模型
  • 如何在自定义数据集上训练YOLOv8模型
  • 用于训练YOLOv8目标检测模型的谷歌Colab笔记本
  • 用于训练YOLOv8分类模型的谷歌Colab笔记本
  • 用于训练YOLOv8分割模型的谷歌Colab笔记本
  • 使用YOLOv8和ByteTRACK跟踪和计数车辆)让我们深入了解架构以及 YOLOv8 与以前的 YOLO 模型的不同之处。

2.1 YOLOv8检测网络

在这里插入图片描述

2.2 模型结构

如下图, 左侧为 YOLOv5-s,右侧为 YOLOv8-s。
在暂时不考虑 Head 情况下,对比 YOLOv5 和 YOLOv8 的 yaml 配置文件可以发现改动较小。
在这里插入图片描述
在这里插入图片描述

3. 软件界面功能

  1. 可用于实时检测各类复杂场景种的船舶位置,并显示目标数量;
  2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
  3. 界面可实时显示目标位置、目标总数、置信度、用时等信息;
  4. 支持图片或者视频的检测结果保存;

4. 数据集与训练

数据集为各类复杂场景下的船舶图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含5090张图片,其中训练集包含4576张图片,验证集包含509张图片,测试包含5张图片。
该数据集是专为研究和解决复杂场景下船舶目标检测问题而设计。包含多样性丰富的环境,如交通繁忙的港口、船只密集的渔业区,以及船与岸边混合交通场景。与传统的船舶目标检测数据集不同,本数据集特意考虑了在实际应用场景中常见但在数据集中经常被忽视的问题。例如,船舶在图像或视频帧中不一定是主体,有时仅作为背景出现。此外,数据集还包括船只部分或完全被其他对象遮挡的情况。这些特点使得本数据集非常适用于开发和评估目标检测算法在复杂、多变和部分遮挡条件下的性能。数据集旨在推动船舶目标检测和相关领域的研究进展,以满足日益增长的实际应用需求,例如航海安全、渔业管理以及海洋环境保护等。
在这里插入图片描述
在这里插入图片描述
data.yaml的具体内容如下:

train: D:\BoatDetection\datasets\Data\train
val: D:\BoatDetection\datasets\Data\val
nc: 1
names: ['boat']

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='D:\BoatDetection\datasets\Data\data.yaml', epochs=300, batch=4)  # 训练模型

4.1 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述
本文训练结果如下:
在这里插入图片描述
PR曲线:
在这里插入图片描述

5. 检测结果识别

在这里插入图片描述

6. 结论与展望

基于YOLOv8的船舶目标检测系统为复杂海洋环境下的船舶监测与管理提供了一种高效准确的解决方案。未来,随着人工智能和深度学习技术的不断发展,该系统将进一步提升在海洋领域的应用价值,为构建美丽海洋、实现可持续发展做出更大贡献。

这篇关于基于YOLOV8复杂场景下船舶目标检测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983908

相关文章

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W