R语言数据探索与分析-碳排放分析预测

2024-05-12 13:20

本文主要是介绍R语言数据探索与分析-碳排放分析预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 安装和加载需要的包
install.packages("readxl")
install.packages("forecast")
install.packages("ggplot2")
library(readxl)
library(forecast)
library(ggplot2)# 数据加载和预处理
data <- read_excel("全年数据.xlsx") 
colnames(data) <- c("year", "CO2_Emissions")# 转换year列为日期类型
data$year <- as.Date(as.character(data$year), format="%Y")# 时间序列图绘制
ggplot(data, aes(x = year, y = CO2_Emissions)) +geom_line() +labs(title = "中国工业碳排放量 (年)",x = "年份",y = "二氧化碳排放量") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5))

全国碳排放量

这张图表展示了中国碳排放的时间序列数据,横轴标记为“年份”,时间范围从2005年开始一直到2020年结束。纵轴标记为“碳排放”,表示中国每年的碳排放量。从这个图表中,可以观察到以下趋势和特点:碳排放的显著增长:从2005年开始,中国的碳排放量呈现出明显的增长趋势。这可能与中国在这些年中快速发展和工业化过程中的能源需求增加有关。

人口增长趋势:与碳排放趋势相似,中国的人口数量也在这个时期稳步增长。人口增长可能是碳排放增长的一个主要因素,因为更多的人口需要更多的能源和资源。碳排放的高峰:在图表上可以看到,碳排放量在2014年左右达到了一个高峰。这可能是由于中国政府采取了一些政策措施来减少碳排放,或者与工业结构的变化有关。小幅下降或趋于平稳:在高峰之后,碳排放量在2015年左右出现了一些小幅下降或趋于平稳的迹象。这可能是由于能源效率改进、可再生能源使用增加等因素的影响。增长趋势恢复:然而,随着时间的推移,碳排放的增长趋势似乎又恢复。尽管增长速度可能有所放缓,但仍然是一个值得关注的趋势。

总的来说,这张图表提供了关于中国碳排放和人口增长之间关系的见解。它强调了减少碳排放和可持续发展的重要性,以应对气候变化和环境挑战。这也可能促使政府和社会采取更多的措施来降低碳排放并推动可持续发展。

接下来使用模型自动定阶:

Series: data$CO2_Emissions

ARIMA(2,1,0) with drift

Coefficients:

         ar1      ar2     drift

      1.1907  -0.5293  432.6742

s.e.  0.1882   0.1856  109.8183

sigma^2 = 31708:  log likelihood = -124.58

AIC=257.17   AICc=260.02   BIC=260.94

指定的ARIMA模型是(2,1,0)附带漂移项。表示该模型是一个包含两个自回归项(AR)、一次差分(I - 积分)和零个滑动平均项(MA)的ARIMA模型。

其中:ar1 和 ar2 是第一和第二自回归项的系数。ar1的系数是1.1907,标准误为0.1882;ar2的系数是-0.5293,标准误为0.1856。这些系数表明了前一时期(或前几时期)的数据对当前值的影响。漂移(drift)系数是432.6742,标准误为109.8183,表明有一个正向的线性趋势,即CO2排放量随时间呈上升趋势。sigma^2:模型的方差为31708,这是残差的方差,也就是模型未能解释的变动部分。对数似然值(log likelihood):是-124.58,用于衡量模型拟合数据的好坏。AIC(赤池信息准则):是257.17,AICc(校正后的赤池信息准则)是260.02,BIC(贝叶斯信息准则)是260.94。这些准则越低表明模型越好,通常用于比较不同模型的拟合优度。

# 预测模型
model <- auto.arima(data$CO2_Emissions)
modelforecast_data <- forecast(model, h = 5) # 预测未来5年# 预测结果可视化
plot(forecast_data, main = "碳排放预测")# 模型检验
checkresiduals(model)

# 预测未来5年的

从预测趋势的角度来看,模型显示中国的碳排放量将继续增长。然而,随着时间的推移,置信区间变得越来越宽,这意味着我们对未来的预测变得越来越不确定。这种不确定性可以由多种因素造成

省碳排放量

这张图提供了关于2015年中国各省一氧化碳排放量的重要信息。一氧化碳是一种对人类健康和环境具有潜在危害的气体,因此对其排放量的监测和理解至关重要。

图是中国各省2021年二氧化碳排放量的泡泡图(气泡图)。这种图通常用于显示三个维度的数据:X轴代表一维,Y轴代表第二维,而气泡的大小代表第三维。在这张图中:X轴表示二氧化碳排放量。Y轴是中国的省份,以纵向形式列出。气泡的大小代表排放量的相对大小。

区域差异分析

# 区域差异分析
ggplot(data_long, aes(x = Province, y = CO2_Emissions)) +geom_boxplot() +coord_flip() +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量差异", x = "省份", y = "二氧化碳排放量")

图可以看出,不同省份的二氧化碳排放量分布差异较大。一些省份,如北京和天津,显示出较窄的四分位数距,这意味着它们的数据点相对集中。其他一些省份,如山西和河北,四分位数距较宽,表明它们的排放量分布较为分散。

时间趋势分析:

从图表中可以观察到以下几点:大部分省份的二氧化碳排放量在2000年到2020年之间呈现上升趋势。有几条折线显示出异常的急剧增长,尤其是那些在2010年后迅速上升的省份,这可能是由于快速工业化、能源消耗增加或其他因素导致的排放量增加。

从热图上可以看出:大部分省份的二氧化碳排放量在这段时间里都有所增长,特别是在2010年之后,许多省份的排放量显著增加。某些省份,如山西、内蒙古、河北和天津的二氧化碳排放量尤其高,这些地区可能是重工业的集中地。...

代码

# 安装和加载需要的包
install.packages("readxl")
install.packages("forecast")
install.packages("ggplot2")
library(readxl)
library(forecast)
library(ggplot2)# 数据加载和预处理
data <- read_excel("data.xlsx") 
colnames(data) <- c("year", "CO2_Emissions")# 转换year列为日期类型
data$year <- as.Date(as.character(data$year), format="%Y")# 时间序列图绘制
ggplot(data, aes(x = year, y = CO2_Emissions)) +geom_line() +labs(title = "中国工业碳排放量 (年)",x = "年份",y = "二氧化碳排放量") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5))# 预测模型
model <- auto.arima(data$CO2_Emissions)
modelforecast_data <- forecast(model, h = 5) # 预测未来5年# 预测结果可视化
plot(forecast_data, main = "碳排放预测")# 模型检验
checkresiduals(model)###个省份数据
# 数据加载和预处理
data <- read_excel("data.xlsx")
colnames(data) <- c("Year", "Beijing", "Tianjin", "Hebei", "Shanxi", "Inner Mongolia", "Liaoning", "Jilin", "Heilongjiang", "Shanghai", "Jiangsu", "Zhejiang", "Anhui", "Fujian", "Jiangxi", "Shandong", "Henan", "Hubei", "Hunan", "Guangdong", "Guangxi", "Hainan", "Chongqing", "Sichuan", "Guizhou", "Yunnan", "Shaanxi", "Gansu", "Qinghai", "Ningxia", "Xinjiang")
data_long <- melt(data, id.vars = "Year", variable.name = "Province", value.name = "CO2_Emissions")# 空间分布分析
# 比如分析2015年的空间分布
data_2015 <- subset(data_long, Year == 2015)
ggplot(data_2015, aes(x = reorder(Province, CO2_Emissions), y = CO2_Emissions)) +geom_bar(stat = "identity") +coord_flip() +labs(title = "2015年各省二氧化碳排放量", x = "省份", y = "二氧化碳排放量") +theme(plot.title = element_text(hjust = 0.5))  # 确保标题居中# 筛选2021年的数据
data_2021 <- subset(data_long, Year == 2021)
# 检查2021年的数据
print(head(data_2021))
summary(data_2021$CO2_Emissions)ggplot(data_2021, aes(x = reorder(Province, CO2_Emissions), y = CO2_Emissions, size = CO2_Emissions)) +geom_point(aes(color = CO2_Emissions), alpha = 0.7) +  # 添加颜色映射到CO2_Emissionsscale_color_viridis_c() +  # 使用viridis颜色方案scale_size_continuous(range = c(1, 20)) +labs(title = "2021年各省二氧化碳排放量气泡图", x = "省份", y = "二氧化碳排放量") +theme_minimal() +coord_flip() +theme(plot.title = element_text(hjust = 0.5))  # 确保标题居中theme(legend.position = "bottom")  # 将图例放置在底部# 区域差异分析
ggplot(data_long, aes(x = Province, y = CO2_Emissions)) +geom_boxplot() +coord_flip() +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量差异", x = "省份", y = "二氧化碳排放量")# 时间趋势分析
ggplot(data_long, aes(x = Year, y = CO2_Emissions, group = Province, color = Province)) +geom_line() +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量趋势", x = "年份", y = "二氧化碳排放量")# 转换数据为宽格式(wide format)用于热图分析
data_wide <- dcast(data_long, Year ~ Province, value.var = "CO2_Emissions")# 检查data_wide的列名
print(colnames(data_wide))
print(head(data_wide))# 需要将数据重新转换为长格式
data_long_for_heatmap <- melt(data_wide, id.vars = "Year", variable.name = "Province", value.name = "CO2_Emissions")# 创建热图
ggplot(data_long_for_heatmap, aes(x = Year, y = Province, fill = CO2_Emissions)) +geom_tile() +scale_fill_gradient(low = "blue", high = "red") +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量热图", x = "年份", y = "省份")

创作不易,希望大家多多点赞收藏和评论!

这篇关于R语言数据探索与分析-碳排放分析预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982748

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl