SR3-05S电机保护器 施耐德 EOCR-SR3

2024-05-12 02:20

本文主要是介绍SR3-05S电机保护器 施耐德 EOCR-SR3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

EOCR-SR3电机保护器 施耐德

EOCR主要产品有电子式电动机保护继电器,电子式过电流继电器,电子式欠电流继电器,电子式欠电压继电器,其它保护和监视装置,电流互感器。

系列型号:

EOCR-SR3-05S

EOCR-SR3-30S

EOCR-SR3-60S

EOCR-DS3T-05S

EOCR-DS3T-30S

EOCR-DS3T-60S

密集型设计
■ 基于MCU的产品
■ 电子式多保护功能
■ 宽的电流调整范围(10:1)
■ 电流表功能和跳闸指示
■ 方便查找故障原因和运转监视
■ 手动即时复位/电动远距离复位
■ 自检功能
■ 强的环境适应性
■ 失效-安全工作方式(无电压释放)

EOCR-DS1(T)/DS2(T)/DS3(T) 保  护

保护项目 EOCR动作(跳闸)时间

DS1(T) DS2(T) DS3(T)

过电流 O-TIME(曲线) O-TIME O-TIME

缺相 4秒 4秒 4秒

堵转 D-TIME+O-TIME D-TIME+O-TIME D-TIME+O-TIME

时间特性 反时限 定时限 定时限

EOCR-DS1(T)/DS2(T)/DS3(T) 技术条件

电流设定 型号 DS1(T) DS2(T) DS3(T)

05 1-6A 1-6A

30 5-30A 5-30A

60 - 5-60A

100-(超过60A) 选择外接CT

时间设定 启动 D-TIME 0~50s 1~50s

跳闸 O-TIME 1 ~ 10s 0.2~10s

控制电压(50/60HZ) 110 85-150VAC

220 180-260VAC

继电器输出 形式 2-SPST

额定负载 3A/250VAC 阻性

状态 常态被激励

时间-电流特性 反时限 定时限 定时限

跳闸和跳闸原因指示 2-LED

安装 35mm轨道

EOCR-DS1(T)/DS2(T)/DS3(T) 典型参考图/接线图/安装尺寸图

上海约瑟继电器事业部

这篇关于SR3-05S电机保护器 施耐德 EOCR-SR3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981333

相关文章

【电机控制】数字滤波算法(持续更新)

文章目录 前言1. 数字低通滤波 前言 各种数字滤波原理,离散化公式及代码。 1. 数字低通滤波 滤波器公式 一阶低通滤波器的输出 y [ n ] y[n] y[n] 可以通过以下公式计算得到: y [ n ] = α x [ n ] + ( 1 − α ) y [ n − 1 ] y[n] = \alpha x[n] + (1 - \alpha) y[n-1]

基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述        基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真。PI控制器是一种经典的线性控制器,它通过将控制量的比例部分和积分部分相结合来实现对系统输出的调节。比例部分用于快速响应偏差,而积分部分则用于消除稳态误差。 2.系统仿真结果 (完整程

【科普知识】一体化电机掉电后“位置精准复位“机制与规律

在工业自动化、机器人技术及精密控制领域,电机作为核心执行元件,其稳定运行和精确控制对于整个系统的性能至关重要。 然而,电机在运行过程中可能会遭遇突然断电的情况,这会导致电机失去驱动力并停止在当前位置,甚至在某些情况下发生位置偏移。 因此,电机掉电后的位置恢复机制成为了一个关键技术问题。本文将探讨电机掉电后位置恢复的原理机制,以期为相关领域的研究与应用提供参考。 一、电机掉电后的位置偏移现象

用于充电桩的B型剩余电流保护器的设计

摘要       对含有充电桩的充电系统漏电原理、特征和保护安装位置进行了分析,并提出用于充电桩的B型剩余电流保护器的一种设计方案,通过双磁芯及对应的拓扑结构实现剩余电流的检测。分析了不同拓扑结构对应类型的剩余电流实现脱扣的机理,对直流剩余电流的检测采用磁调制技术,对其余类型剩余电流提出不进行波形识别、直接整流的电流检测方案。根据不同拓扑结构检测的电流类型,提出上方磁芯选择磁滞回线扁平、高磁导率

工业三相电机的反转

反转旋转:简单方法 对于只需要单向运转的电机,直接的解决方案是反转来自电源的两根物理输入线。实际上,这正是逆变器和反向启动器内部发生的事情,但它都隐藏在“引擎盖下”。 但这究竟是如何实现的呢?为什么反转几根电线会对大型电机产生如此大的影响呢? 请务必参考电机制造商的说明,确保正确反转。并非所有电机都有相同的要求,但大多数三相电机都遵循相同的原理运行。 三相电机基础知识 在本文中,我们将仅

智能电动机保护器的应用

马达保护器 综合保护器 过载保护器 缺相保护器 过流保护器 在当今快速发展的工业时代,电动机作为驱动各类机械设备的心脏,其稳定性和安全性直接关系到生产效率和人员安全。然而,电动机在运行过程中常常面临着各种潜在威胁,如过流、欠流、断相、过热等故障,这些问题一旦处理不当,不仅会导致设备损坏,还可能引发严重的生产事故。因此,电动机保护器的使用显得尤为重要。 电动机保护器能够实时监测电动机的运行状态,

开绕组永磁电机驱动系统零序电流抑制策略研究(7)——基于零矢量重新分布的120°矢量解耦/中间六边形调制零序电流抑制策略

1.前言 很久没有更新过开绕组电机的仿真了。在一年前发了开绕组的各种调制策略。开绕组电机最常见的两种解耦调制就是120°矢量解耦/中间六边形调制和180°矢量解耦/最大六边形调制。 我当时想的是,180°解耦调制/最大六边形调制的电压利用率最高,所以我就一直用这个调制方式。但是近年来做开绕组电机的基本都是华科的老师,而他们都采用了120°调制/中间六边形调制。 我之前是做了120°解耦调

LabVIEW电机多次调用

在LabVIEW中,为实现对多个电机的独立控制,工程师可以采用可重入VI、动态VI调用、多任务结构或面向对象编程等方法。每种方法都有其优点和适用场景,选择合适的方法能有效提升系统的性能和可维护性。 在LabVIEW中,如果需要多次调用控制电机的VI,并且需要针对每个电机进行单独控制,可以采用以下几种方法: 1. 创建可重入的(Reentrant)VI 方法:将电机控制的VI设置为可

【电机控制】有感FOC之霍尔自学习

文章目录 前言1 霍尔自学习的目的2 霍尔自学习的流程3 定位角度时的设置 前言 PMSM(永磁同步电机)的FOC控制算法中,无论是有感还是无感,对于位置(电角度)的确定都是其中重要而不可或缺的一环。本文介绍有感FOC的前期准备工作,对霍尔自学习的过程和作用进行简要说明。 1 霍尔自学习的目的 霍尔自学习有两个主要目的: 第一,获取霍尔状态的顺序,并与转动方向对应。 第二

聊聊2相步进电机的细分算法与细分步进角

2 相步进电机是一种常见的电机类型,广泛应用于各种自动化设备中。细分算法是提高步进电机精度和运行平稳性的重要手段。 一、细分算法的原理 细分算法的基本思想是将一个整步分成若干个微步,通过控制电机绕组中的电流大小和方向,使电机的转子在每个微步中转动一个微小的角度。这样可以大大提高电机的分辨率和精度,同时也可以降低电机的振动和噪声。 细分算法通常采用正弦波电流控制方式,即通过控制电机绕组中的电流