Tensorflow,Alexnet和MNIST数据 识别手写的数字(入门,代码,解析)

本文主要是介绍Tensorflow,Alexnet和MNIST数据 识别手写的数字(入门,代码,解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet,它可以算是LeNet的一种更深更宽的版本。AlexNet以显著的优势赢得了竞争激烈的ILSVRC 2012比赛,top-5的错误率降低至了16.4%,远远领先第二名的26.2%的成绩。AlexNet的出现意义非常重大,它证明了CNN在复杂模型下的有效性,而且使用GPU使得训练在可接受的时间范围内得到结果,让CNN和GPU都大火了一把。AlexNet可以说是神经网络在低谷期后的第一次发声,确立了深度学习(深度卷积网络)在计算机视觉的统治地位,同时也推动了深度学习在语音识别、自然语言处理、强化学习等领域的拓展。


AlexNet每层的超参数如图所示:

其中, 
Input:图片尺寸224*224 
Conv1:卷积核11*11,步长4,96个filter(卷积核尺寸较大) 
ReLU 
LRN1 
Max pooling1:3*3,步长2 
Conv2:卷积核5*5,步长1,256个filter 
ReLU 
LRN2 
Max pooling2:3*3,步长2 
Conv3:卷积核3*3,步长1,384个filter 
ReLU 
Conv4:卷积核3*3,步长1,384个filter 
ReLU 
Conv5:卷积核3*3,步长1,256个filter 
ReLU 
Max pooling3:3*3,步长2 
FC1:4096 
ReLU 
FC2:4096 
ReLU 
FC3(Output):1000
 

在这里要注意一下原来Alexnet输入的图片大小为:224*224*3,MNIST数据输入图像是28*28*1,需要对原网络的卷积核进行对应的更改。

参看的文章

① https://blog.csdn.net/Greyhatjzy/article/details/70197008 代码①

② https://blog.csdn.net/lwplwf/article/details/72870378 代码②

③ https://blog.csdn.net/taoyanqi8932/article/details/71081390 原理介绍

一、两个代码的区别

①和②的主要区别是:

1.网络的不同:①中的1,2,5层网络有norm层和dropout层,②没有;②在6,7全链接层有dropout,①没有;

2.训练的方法不同:①中是在限制条件(step * batch_size < training_epochs)的依次取batch进行训练,run(optm)的次数是step* batch_size;②是先看训练集有几个patch,也就是total_batch,对每一个patch进行训练,这个算一个epoch,也就是run(optm)的次数是training_epochs*total_batch。

这两种训练方法的原理是一样的。

首先看看mnist.train.next_batch函数,作用效果是按数据顺序依次返回下一个batch,如果取了一些batch后发现剩余数据不到一个batch的数量,此函数会默认将数据打乱,用打乱数据的开头和剩余数据拼接成一个batch。

def next_batch(self, batch_size, fake_data=False, shuffle=True):"""Return the next `batch_size` examples from this data set."""if fake_data: #是否使用假数据fake_image = [1] * 784if self.one_hot:fake_label = [1] + [0] * 9else:fake_label = 0return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]start = self._index_in_epoch#指针指向开头# Shuffle for the first epochif self._epochs_completed == 0 and start == 0 and shuffle:#打乱数据perm0 = numpy.arange(self._num_examples)numpy.random.shuffle(perm0)self._images = self.images[perm0]self._labels = self.labels[perm0]# Go to the next epoch#如果指针指到快结尾了,剩余部分不到一个batch量if start + batch_size > self._num_examples:# Finished epochself._epochs_completed += 1 #表示已经完成一次数据的输出# Get the rest examples in this epochrest_num_examples = self._num_examples - startimages_rest_part = self._images[start:self._num_examples]labels_rest_part = self._labels[start:self._num_examples]# Shuffle the dataif shuffle:perm = numpy.arange(self._num_examples)numpy.random.shuffle(perm)self._images = self.images[perm]self._labels = self.labels[perm]# Start next epochstart = 0self._index_in_epoch = batch_size - rest_num_examplesend = self._index_in_epochimages_new_part = self._images[start:end]labels_new_part = self._labels[start:end]return numpy.concatenate(  #将前一个数据的尾和shuttle后数据的头连接到一起(images_rest_part, images_new_part), axis=0), numpy.concatenate((labels_rest_part, labels_new_part), axis=0)else: #正常按照顺序取batchself._index_in_epoch += batch_sizeend = self._index_in_epochreturn self._images[start:end], self._labels[start:end]

所以②训练相对于①训练有点多此一举,不过透露了训练的实质。

 

二、代码的运行:

代码①可以迅速的实现,但是代码②会发现内存不足原因是代码②有对测试数据的测试,所以删掉测试数据那句代码就可以快乐的跑啦(需要更改的地方如下)

if epoch % display_step == 0:train_accuracy = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0})#test_accuracy = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob:1.0})print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f " % (epoch, training_epochs, avg_cost, train_accuracy))

其次代码②为什么比代码①慢呢?

因为代码①每run一次(optimizer)都会输出一次结果,而代码②是run了total_batch次(optimizer)才输出一次结果。所以给人的感觉比较慢咯~~

这篇关于Tensorflow,Alexnet和MNIST数据 识别手写的数字(入门,代码,解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980620

相关文章

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro