Tensorflow,Alexnet和MNIST数据 识别手写的数字(入门,代码,解析)

本文主要是介绍Tensorflow,Alexnet和MNIST数据 识别手写的数字(入门,代码,解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet,它可以算是LeNet的一种更深更宽的版本。AlexNet以显著的优势赢得了竞争激烈的ILSVRC 2012比赛,top-5的错误率降低至了16.4%,远远领先第二名的26.2%的成绩。AlexNet的出现意义非常重大,它证明了CNN在复杂模型下的有效性,而且使用GPU使得训练在可接受的时间范围内得到结果,让CNN和GPU都大火了一把。AlexNet可以说是神经网络在低谷期后的第一次发声,确立了深度学习(深度卷积网络)在计算机视觉的统治地位,同时也推动了深度学习在语音识别、自然语言处理、强化学习等领域的拓展。


AlexNet每层的超参数如图所示:

其中, 
Input:图片尺寸224*224 
Conv1:卷积核11*11,步长4,96个filter(卷积核尺寸较大) 
ReLU 
LRN1 
Max pooling1:3*3,步长2 
Conv2:卷积核5*5,步长1,256个filter 
ReLU 
LRN2 
Max pooling2:3*3,步长2 
Conv3:卷积核3*3,步长1,384个filter 
ReLU 
Conv4:卷积核3*3,步长1,384个filter 
ReLU 
Conv5:卷积核3*3,步长1,256个filter 
ReLU 
Max pooling3:3*3,步长2 
FC1:4096 
ReLU 
FC2:4096 
ReLU 
FC3(Output):1000
 

在这里要注意一下原来Alexnet输入的图片大小为:224*224*3,MNIST数据输入图像是28*28*1,需要对原网络的卷积核进行对应的更改。

参看的文章

① https://blog.csdn.net/Greyhatjzy/article/details/70197008 代码①

② https://blog.csdn.net/lwplwf/article/details/72870378 代码②

③ https://blog.csdn.net/taoyanqi8932/article/details/71081390 原理介绍

一、两个代码的区别

①和②的主要区别是:

1.网络的不同:①中的1,2,5层网络有norm层和dropout层,②没有;②在6,7全链接层有dropout,①没有;

2.训练的方法不同:①中是在限制条件(step * batch_size < training_epochs)的依次取batch进行训练,run(optm)的次数是step* batch_size;②是先看训练集有几个patch,也就是total_batch,对每一个patch进行训练,这个算一个epoch,也就是run(optm)的次数是training_epochs*total_batch。

这两种训练方法的原理是一样的。

首先看看mnist.train.next_batch函数,作用效果是按数据顺序依次返回下一个batch,如果取了一些batch后发现剩余数据不到一个batch的数量,此函数会默认将数据打乱,用打乱数据的开头和剩余数据拼接成一个batch。

def next_batch(self, batch_size, fake_data=False, shuffle=True):"""Return the next `batch_size` examples from this data set."""if fake_data: #是否使用假数据fake_image = [1] * 784if self.one_hot:fake_label = [1] + [0] * 9else:fake_label = 0return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]start = self._index_in_epoch#指针指向开头# Shuffle for the first epochif self._epochs_completed == 0 and start == 0 and shuffle:#打乱数据perm0 = numpy.arange(self._num_examples)numpy.random.shuffle(perm0)self._images = self.images[perm0]self._labels = self.labels[perm0]# Go to the next epoch#如果指针指到快结尾了,剩余部分不到一个batch量if start + batch_size > self._num_examples:# Finished epochself._epochs_completed += 1 #表示已经完成一次数据的输出# Get the rest examples in this epochrest_num_examples = self._num_examples - startimages_rest_part = self._images[start:self._num_examples]labels_rest_part = self._labels[start:self._num_examples]# Shuffle the dataif shuffle:perm = numpy.arange(self._num_examples)numpy.random.shuffle(perm)self._images = self.images[perm]self._labels = self.labels[perm]# Start next epochstart = 0self._index_in_epoch = batch_size - rest_num_examplesend = self._index_in_epochimages_new_part = self._images[start:end]labels_new_part = self._labels[start:end]return numpy.concatenate(  #将前一个数据的尾和shuttle后数据的头连接到一起(images_rest_part, images_new_part), axis=0), numpy.concatenate((labels_rest_part, labels_new_part), axis=0)else: #正常按照顺序取batchself._index_in_epoch += batch_sizeend = self._index_in_epochreturn self._images[start:end], self._labels[start:end]

所以②训练相对于①训练有点多此一举,不过透露了训练的实质。

 

二、代码的运行:

代码①可以迅速的实现,但是代码②会发现内存不足原因是代码②有对测试数据的测试,所以删掉测试数据那句代码就可以快乐的跑啦(需要更改的地方如下)

if epoch % display_step == 0:train_accuracy = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0})#test_accuracy = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob:1.0})print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f " % (epoch, training_epochs, avg_cost, train_accuracy))

其次代码②为什么比代码①慢呢?

因为代码①每run一次(optimizer)都会输出一次结果,而代码②是run了total_batch次(optimizer)才输出一次结果。所以给人的感觉比较慢咯~~

这篇关于Tensorflow,Alexnet和MNIST数据 识别手写的数字(入门,代码,解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980620

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.