卡特兰数(Catalan)的原理和题目

2024-05-11 19:18

本文主要是介绍卡特兰数(Catalan)的原理和题目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Catalan数的定义令h(1)=1,Catalan数满足递归式:h(n) = h(1)*h(n-1) +h(2)*h(n-2) + ... + h(n-1)h(1),n>=2该递推关系的解为:

证明:

令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数(也就是1的个数>=0的个数)。显然含n个1、n个0的2n位二进制数共有个,可以理解为 (2n)!/(n!*n!)

下面考虑不满足要求的数目。用上面的所有组合数减去不满足的要求的数量

考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),然后互0和1的值,则后面的0排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

从而

证毕。

个人理解

解答: 设P2n为这样所得的数的个数。在2n位上填入n个1的方案数为 C(n 2n)

不填1的其余n位自动填以数0。从C(n 2n)中减去不符合要求的方案数即为所求。

不合要求的数指的是从左而右扫描,出现0的累计数超过1的累计数的数。

不合要求的数的特征是从左而右扫描时,必然在某一奇数2m+1位上首先出现m+1个0的累计数,和m个1的累计数。

此 后有n-m个1,n-m-1个0。如若把后面这部分0与1交换,使之成为n-m个0,n-m-1个1,结果得 1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n-1个1和n+1个0组成的一个排列。

反过来,任何一个 由n+1个0,n-1个1组成的2n位数,由于0的个数多2个,2n是偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面的部分,令0 和1互换,使之成为由n个0和n个1组成的2n位数。即n+1个0和n-1个1组成的2n位数,必对应于一个不合要求的数。

用上述方法建立了由n+1个0和n-1个1组成的2n位数,与由n个0和n个1组成的2n位数中从左向右扫描出现0的累计数超过1的累计数的数一一对应。

  • 1 带限制条件的路径总数
  • 2 括号序列计数
  • 3 出栈顺序
  • 4 排队问题
  • 5 二叉树计数
  • 6 机器人回到原点

这篇关于卡特兰数(Catalan)的原理和题目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980419

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入