算法—青蛙跳台阶问题汇总

2024-05-11 19:18

本文主要是介绍算法—青蛙跳台阶问题汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 第一题(引子):输出菲波那切数列的第N项。
斐波那契数列含义(百度百科):
指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)递归方式:public static int fibnacci(int n){if (n==0){return 0;}if (n==1){return 1;}return fibnacci(n-1)+fibnacci(n-2);}我们计算n为4的情况:那么我们需要做如下的计算:Fibonacci(4) = Fibonacci(3) + Fibonacci(2);= Fibonacci(2) + Fibonacci(1) + Fibonacci(1) + Fibonacci(0);= Fibonacci(1) + Fibonacci(0) + Fibonacci(1) + Fibonacci(1) + Fibonacci(0);看看,多做了多少计算。2 计算了 2次,1 计算了5次,0计算了3次。正常来说我们计算4次就可以了吧。这样相当于多做了4次。非递归方式:public static int fibnacci2(int n){if (n==0){return 0;}if (n==1 || n==2){return  1;}int f1=1;int f2=1;int count=3;while (count++<=n){int temp=f1;f1=f2;f2=temp+f2;}return f2;}
延伸到青蛙跳台阶问题:
2. 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。如果n=1,只有一种跳法,那就是1如果n=2,那么有两种跳法,2,[1,1]如果n=3,那么有三种跳法,[1,1,1],,[1,2],[2,1]如果n=4,那么有五种跳法,[1,1,1,1],[1,1,2],[1,2,1],[2,1,1],[2,2]如果n=5,那么有八种跳法,[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,2,1,1],[2,1,1,1],[2,2,1],[2,1,2],[1,2,2]结果为1,2,3,5,8  这不特么是斐波那切数列嘛递归做法:public static int jump(int n){if (n==0)return 0;if (n==1)return 1;if (n==2)return 2;return jump(n-1)+jump(n-2);}非递归做法:public static int jump2(int n){if (n==0)return 0;if (n==1)return 1;if (n==2)return 2;int n1=1;int n2=2;int count=2;while (count++<=n){int tmp=n1;n1=n2;n2=tmp+n2;}return n2;}//一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。跳1阶,还剩n-1阶//f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
3. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)= f(0) + f(1) + f(2) + f(3) + ... + f(n-2)+f(n-1)f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)so  f(n)=2*f(n-1)public int Jump3(int n) {if (n <= 1) {return 1;} else {return 2 * Jump3(n - 1);}}4. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个m级的台阶总共有多少种跳法。先列多项式:f(n) =  f(n-1) + f(n-2) + f(n-3) + ... + f(n-m)f(n-1) =   f(n-2) + f(n-3) + ... + f(n-m) + f(n-m-1)化简得:f(n) = 2f(n-1) - f(n-m-1)public static int Jump4(int n,int m ) {//当大于m的时候是上面的公式if(n > m){return 2*Jump4(n-1, m)-Jump4(n-1-m, m);}//当小于等于m的时候就是和n级的相同了if (n <= 1) {return 1;} else {return 2 * Jump4(n - 1,n);}}
}

 

这篇关于算法—青蛙跳台阶问题汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980418

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文