lio-sam建图实现

2024-05-11 17:52
文章标签 实现 sam 建图 lio

本文主要是介绍lio-sam建图实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:https://blog.csdn.net/unlimitedai/article/details/107378759

https://blog.csdn.net/weixin_44126988/article/details/131654142?ops_request_misc=&request_id=&biz_id=102&utm_term=lego-loam%E5%BB%BA%E5%9B%BE%E8%BD%AC%E4%B8%BA%E6%A0%85%E6%A0%BC%E5%9C%B0%E5%9B%BE&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-131654142.nonecase&spm=1018.2226.3001.4187

https://blog.csdn.net/zhuchao414259/article/details/127993112?ops_request_misc=&request_id=&biz_id=102&utm_term=rslidar3d%E5%BB%BA%E5%9B%BE&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-127993112.142v100control&spm=1018.2226.3001.4187
代码:https://github.com/TixiaoShan/LIO-SAM
数据集: https://pan.baidu.com/s/1-sAB_cNlYPqTjDuaFgz9pg 提取码: ejmu (walk不需要改配置文件,其他两个需要下文有)
原文:bashLIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping

作者Tixiao Shan在2018年发表过LeGO-LOAM,当时他还在史蒂文斯理工学院读博士,19年毕业之后去了MIT做助理研究员(羡慕.jpg)。。。这篇文章LIO-SAM实际上是LeGO-LOAM的扩展版本,添加了IMU预积分因子和GPS因子,去除了帧帧匹配部分,然后更详细地描述了LeGO-LOAM帧图匹配部分的设计动机和细节。(引用于知乎大佬文章【论文阅读38】LIO-SAM)现在论文已经被IROS2020录用,作为高精度,imu,雷达,gps结合,程序还少的开源slam,非常值得学习。

需要安装的依赖:

sudo apt-get install -y ros-kinetic-navigation
sudo apt-get install -y ros-kinetic-robot-localization
sudo apt-get install -y ros-kinetic-robot-state-publisher

安装gtsam4.0.2库:

wget -O ~/Downloads/gtsam.zip https://github.com/borglab/gtsam/archive/4.0.2.zip
cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/
cd ~/Downloads/gtsam-4.0.2/
mkdir build && cd build
cmake -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF ..
sudo make install -j8

修改后的launch文件run_gugao.launch:

<launch><arg name="project" default="lio_sam"/><!-- Parameters --><rosparam file="$(find lio_sam)/config/params_mingnuo.yaml" command="load" /><!--- LOAM --><include file="$(find lio_sam)/launch/include/module_loam.launch" /><!--- Robot State TF --><include file="$(find lio_sam)/launch/include/module_robot_state_publisher.launch" /><!--- Run Navsat --><include file="$(find lio_sam)/launch/include/module_navsat.launch" /><!--- Run Rviz--><include file="$(find lio_sam)/launch/include/module_rviz.launch" /></launch>

运行walk数据包不需要改params.yaml文件。其他两个数据包运行要修改topics和extrinsicRPY,extrinsicRot。需要保存pcd请修改保存true和路径。之后sudo gedit /opt/ros/kinetic/lib/python2.7/dist-packages/roslaunch/nodeprocess.py
调大_TIMEOUT_SIGINT值:
具体params.yaml配置修改:
修改点:
imu话题
激光话题
imu和激光外参extrinsicRot和extrinsicRPY
保存地图的开关:
savePCD: true # https://github.com/TixiaoShan/LIO-SAM/issues/3
savePCDDirectory: “/houduan/LIO-SAM_down/LIO-SAM_ws/out1/” # 记住不要加/home/name

lio_sam:# TopicspointCloudTopic: "points_raw"               # Point cloud dataimuTopic: "imu_correct"                         # IMU dataodomTopic: "odometry/imu"                   # IMU pre-preintegration odometry, same frequency as IMUgpsTopic: "odometry/gpsz"                   # GPS odometry topic from navsat, see module_navsat.launch file# GPS SettingsuseImuHeadingInitialization: false           # if using GPS data, set to "true"useGpsElevation: false                      # if GPS elevation is bad, set to "false"gpsCovThreshold: 2.0                        # m^2, threshold for using GPS dataposeCovThreshold: 25.0                      # m^2, threshold for using GPS data# Export settingssavePCD: true                              # https://github.com/TixiaoShan/LIO-SAM/issues/3savePCDDirectory: "/data/lio/"        # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation# Sensor SettingsN_SCAN: 16                                  # number of lidar channel (i.e., 16, 32, 64, 128)Horizon_SCAN: 1800                          # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048)timeField: "time"                           # point timestamp field, Velodyne - "time", Ouster - "t"downsampleRate: 1                           # default: 1. Downsample your data if too many points. i.e., 16 = 64 / 4, 16 = 16 / 1 # IMU SettingsimuAccNoise: 3.9939570888238808e-03imuGyrNoise: 1.5636343949698187e-03imuAccBiasN: 6.4356659353532566e-05imuGyrBiasN: 3.5640318696367613e-05imuGravity: 9.80511# Extrinsics (lidar -> IMU)extrinsicTrans: [0.0, 0.0, 0.0]extrinsicRPY: [1,  0, 0,0, 1, 0,0, 0, 1]extrinsicRot: [1, 0, 0,0, 1, 0,0, 0, 1]# extrinsicRPY: [1, 0, 0,#                 0, 1, 0,#                 0, 0, 1]# LOAM feature thresholdedgeThreshold: 1.0surfThreshold: 0.1edgeFeatureMinValidNum: 10surfFeatureMinValidNum: 100# voxel filter papramsodometrySurfLeafSize: 0.4                     # default: 0.4mappingCornerLeafSize: 0.2                    # default: 0.2mappingSurfLeafSize: 0.4                      # default: 0.4# robot motion constraint (in case you are using a 2D robot)z_tollerance: 1000                            # metersrotation_tollerance: 1000                     # radians# CPU ParamsnumberOfCores: 4                              # number of cores for mapping optimizationmappingProcessInterval: 0.15                  # seconds, regulate mapping frequency# Surrounding mapsurroundingkeyframeAddingDistThreshold: 1.0   # meters, regulate keyframe adding thresholdsurroundingkeyframeAddingAngleThreshold: 0.2  # radians, regulate keyframe adding thresholdsurroundingKeyframeDensity: 2.0               # meters, downsample surrounding keyframe poses   surroundingKeyframeSearchRadius: 50.0         # meters, within n meters scan-to-map optimization (when loop closure disabled)# Loop closureloopClosureEnableFlag: falsesurroundingKeyframeSize: 25                   # submap size (when loop closure enabled)historyKeyframeSearchRadius: 15.0             # meters, key frame that is within n meters from current pose will be considerd for loop closurehistoryKeyframeSearchTimeDiff: 30.0           # seconds, key frame that is n seconds older will be considered for loop closurehistoryKeyframeSearchNum: 25                  # number of hostory key frames will be fused into a submap for loop closurehistoryKeyframeFitnessScore: 0.3              # icp threshold, the smaller the better alignment# VisualizationglobalMapVisualizationSearchRadius: 1000.0    # meters, global map visualization radiusglobalMapVisualizationPoseDensity: 10.0       # meters, global map visualization keyframe densityglobalMapVisualizationLeafSize: 1.0           # meters, global map visualization cloud density# Navsat (convert GPS coordinates to Cartesian)
navsat:frequency: 50wait_for_datum: falsedelay: 0.0magnetic_declination_radians: 0yaw_offset: 0zero_altitude: truebroadcast_utm_transform: falsebroadcast_utm_transform_as_parent_frame: falsepublish_filtered_gps: false# EKF for Navsat
ekf_gps:publish_tf: falsemap_frame: mapodom_frame: odombase_link_frame: base_linkworld_frame: odomfrequency: 50two_d_mode: falsesensor_timeout: 0.01# -------------------------------------# External IMU:# -------------------------------------imu0: imu_correct# make sure the input is aligned with ROS REP105. "imu_correct" is manually transformed by myself. EKF can also transform the data using tf between your imu and base_linkimu0_config: [false, false, false,true,  true,  true,false, false, false,false, false, true,true,  true,  true]imu0_differential: falseimu0_queue_size: 50 imu0_remove_gravitational_acceleration: true# -------------------------------------# Odometry (From Navsat):# -------------------------------------odom0: odometry/gpsodom0_config: [true,  true,  true,false, false, false,false, false, false,false, false, false,false, false, false]odom0_differential: falseodom0_queue_size: 10#                            x     y     z     r     p     y   x_dot  y_dot  z_dot  r_dot p_dot y_dot x_ddot y_ddot z_ddotprocess_noise_covariance: [  1.0,  0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    1.0,  0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    10.0, 0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0.03, 0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0.03, 0,    0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0.1,  0,     0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0.25,  0,     0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0.25,  0,     0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0.04,  0,    0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0.01, 0,    0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0.01, 0,    0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0.5,  0,    0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0.01, 0,      0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0.01,   0,0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,    0,    0,      0.015]

论文分析
论文认为loam系列文章存在一些问题。

1.将其数据保存在全局体素地图中
2.难以执行闭环检测
3.没有结合其他绝对测量(GPS,指南针等)
4.当该体素地图变得密集时,在线优化过程的效率降低

原理部分看https://blog.csdn.net/unlimitedai/article/details/107378759,写的非常详细。
lio-sam系统运行后严格依赖imu积分结果/odometry/imu_incremental。

定位部分可以参考另外一个项目的:
https://github.com/Gaochao-hit/LIO-SAM_based_relocalization

这篇关于lio-sam建图实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980243

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、