代码随想录训练营Day29:动态规划1

2024-05-11 17:12

本文主要是介绍代码随想录训练营Day29:动态规划1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

1.动态规划的解题步骤

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

2.509斐波那契数

在这里就不讨论递归和for循环的方式,而是讨论使用动态规划的方式进行推导

1.确定dp[i]的含义:F(i)的值。

2.确定递推公式:dp[i] = dp[i-1] +dp[i-2];//右斐波那契数列的定义可知

3.数组初始化:vector<int> dp(n+1);dp[0]=0;dp[1] = 1;//在这里初始化的长度为n+1.

4.遍历顺序,从小到大遍历

下面的第一种方式是dp数组的变式,因为我们始终只使用了三个数,即dp[i],dp[i-1],dp[i-2]所以如果想要节约内存空间,可以使用三个int类型来进行代替并进行更新即可。

class Solution {
public:int fib(int n) {//这是只有两个数来代替dp数组的/*if(n == 0|| n == 1) return n;int sum0 = 0;   //dp数组的初始化int sum1 = 1;int result = 0;for(int i = 2;i <= n;i++){result = sum0+sum1;sum0 = sum1;sum1 = result;}return result;*/if(n == 0|| n == 1) return n;vector<int> dp(n+1,0);//初始化dp[1] = 1;for(int i=2;i<n+1;i++){dp[i] = dp[i-1]+dp[i-2];}return dp[n];}
};

3.70爬楼梯

和前面的斐波那契数有相同的思路,在这个地方我们需要反向思考,要达到n处,那么我上一步的位置是:n-1或n-2的位置,所以dp[n] = dp[n-1]+dp[n-2];总体来说和上面那个问题差不多。

class Solution {
public:int climbStairs(int n) {/*if(n == 1) return 1;int sum0 = 1;   //dp数组的初始化int sum1 = 1;int result;for(int i = 2;i <= n;i++){result = sum0+sum1;sum0 = sum1;sum1 = result;}return result;*/vector<int> dp(n+1,1);//初始化的时候,爬到1只有一种方法for(int i = 2;i<n+1;i++){dp[i] = dp[i-1]+dp[i-2];//i-1代表爬到i-1的位置再爬一步,i-2代表爬到i-2再爬两步}return dp[n];}
};

4.764使用最小花费爬楼梯

  1. 确定dp数组(dp table)以及下标的含义:dp[i]代表走到i处的最小花费
  2. 确定递推公式:dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);//代表的是走到i处上一步两种情况下的最小花费。扩展:在这个地方如果一次走的不是1步或者两步,那么此时就需要使用for循环来求这个的最小花费了。
  3. dp数组如何初始化:vector<int> dp(n+1,0);//dp[0] = 0,dp[1] = 0;初始化,由于一开始的位置可以在0,也可以在1.
  4. 确定遍历顺序:从小到大进行遍历。
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {/*int len = cost.size();if(len <= 1) return 0;//dp数组,到达i处的最小花费int dp0 = 0,dp1 = 0;int result = 0;for(int i = 2;i <= len;i++){result = min(dp0+cost[i-2],dp1+cost[i-1]);dp0 = dp1 ;dp1 = result;}return result;*///dp[i]爬到i处的最小花费int n = cost.size();vector<int> dp(n+1,0);//dp[0] = 0,dp[1] = 0;初始化for(int i = 2;i<=n;i++){dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);//代表从i-1,i-2开始分别走到这需要的最小花费}return dp[n];}
};

这篇关于代码随想录训练营Day29:动态规划1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980154

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.