【每日力扣】437. 路径总和 III 与105. 从前序与中序遍历序列构造二叉树

本文主要是介绍【每日力扣】437. 路径总和 III 与105. 从前序与中序遍历序列构造二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🔥 个人主页: 黑洞晓威
😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害

437. 路径总和 III

给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum路径 的数目。

路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。

解题思路

  1. 由于路径不必从根节点开始,也不必在叶子节点结束,所以对于每个节点,都要尝试以该节点作为路径的起点,向下搜索满足条件的路径数量。
  2. 递归遍历节点,并分别计算包含当前节点以及不包含当前节点的路径数。
  3. 对于每个节点,递归计算包含当前节点的路径数量,然后递归计算不包含当前节点的路径数量。
  4. 统计符合条件的路径数量。

代码实现

class Solution {public int pathSum(TreeNode root, int targetSum) {if (root == null) {return 0;}// 以当前节点为路径起点的路径数 + 以左子树为路径起点的路径数 + 以右子树为路径起点的路径数int pathsFromRoot = countPaths(root, targetSum) + pathSum(root.left, targetSum) + pathSum(root.right, targetSum);return pathsFromRoot;}private int countPaths(TreeNode node, int targetSum) {if (node == null) {return 0;}int count = 0;if (node.val == targetSum) {count++;}count += countPaths(node.left, targetSum - node.val);count += countPaths(node.right, targetSum - node.val);return count;}
}

105. 从前序与中序遍历序列构造二叉树

给定两个整数数组 preorderinorder ,其中 preorder 是二叉树的先序遍历inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

解题思路

  1. 先序遍历的第一个元素为当前树的根节点。
  2. 在中序遍历中找到根节点的位置,左边为左子树的中序遍历,右边为右子树的中序遍历。
  3. 递归构建左子树和右子树。

代码实现

class Solution {public TreeNode buildTree(int[] preorder, int[] inorder) {return buildTreeHelper(preorder, inorder, 0, 0, inorder.length - 1);}private TreeNode buildTreeHelper(int[] preorder, int[] inorder, int preStart, int inStart, int inEnd) {if (preStart > preorder.length - 1 || inStart > inEnd) {return null;}TreeNode root = new TreeNode(preorder[preStart]);int inIndex = 0;for (int i = inStart; i <= inEnd; i++) {if (inorder[i] == root.val) {inIndex = i;}}root.left = buildTreeHelper(preorder, inorder, preStart + 1, inStart, inIndex - 1);root.right = buildTreeHelper(preorder, inorder, preStart + inIndex - inStart + 1, inIndex + 1, inEnd);return root;}
}

这篇关于【每日力扣】437. 路径总和 III 与105. 从前序与中序遍历序列构造二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979479

相关文章

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re