代码随想录算法训练营第六十天| LeetCode647. 回文子串 、516.最长回文子序列

本文主要是介绍代码随想录算法训练营第六十天| LeetCode647. 回文子串 、516.最长回文子序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LeetCode647. 回文子串 

题目链接/文章讲解/视频讲解:https://programmercarl.com/0647.%E5%9B%9E%E6%96%87%E5%AD%90%E4%B8%B2.html

状态:已解决

1.思路 

        这道题我只想出来了暴力解法,动规解法并没有想出来。根据视频讲解才把它想出来。

(1)确定dp数组以及下标含义:

        本题如果定义dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。那要怎么确定dp数组呢?根据回文串的性质:

        当我们已知s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。也就是说,当确定一个范围是回文串时,我们就要确定这个范围向外面延申的两头是不是相等的,限定范围需要起点和终点,故dp数组应该是二维的:回文串的下表范围[i,j],则判断子字符串(下表范围[i + 1, j - 1])) 是否是回文。

        故dp数组定义为:dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

(2)确定递推公式: 

确定递推公式时,由于要考虑 i+1 和 j-1 的边界问题,需要分析如下几种情况:

当s[i]与s[j]不相等,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

(3)初始化dp数组:

        因为值都会被覆盖,且不可能初始化true(一开始全部都为回文串了,后面无论怎么判断也都会是true),故统一初始化为false。

(4)确定遍历顺序:

根据递推公式,情况三是根据dp[i + 1][j - 1]是否为true,来判断dp[i][j]是否为true的,故需要确定左下角的值,因此遍历顺序应该是从下到上、从左到右。(或者以列遍历)

(5) 举例推导dp数组:

举例,输入:"aaa",dp[i][j]状态如下:

2.代码实现 

class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(),vector<bool>(s.size(),false));int result = 0;for(int i=s.size()-1; i>=0; i--){for(int j=i;j<s.size();j++){ //根据区间定义,i必须比j小.if(s[i] == s[j]){if(j-i<=1){result++;dp[i][j] = true;}else if(dp[i+1][j-1]){result++;dp[i][j] = true;}}}}return result;}
};

时间复杂度:O(n^2)

空间复杂度:O(n^2)

二、516.最长回文子序列 

题目链接/文章讲解/视频讲解:https://programmercarl.com/0516.%E6%9C%80%E9%95%BF%E5%9B%9E%E6%96%87%E5%AD%90%E5%BA%8F%E5%88%97.html

状态:已解决

1.思路 

        这题比上道题简单一点,因为求的是回文子序列不要求连续了。

(1)确定dp数组以及下标含义:

        dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

(2)确定递推公式:

        还是分两种大情况:

① 如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

② 如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

(3)初始化dp数组:

        首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

        其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。        

        这里我为了提高效率就把初始化定义在递推公式的循环里面了。

(4)确定遍历顺序:

        从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:

        故要从下往上、从左到右。

(5)举例推导dp数组:

输入s:"cbbd" 为例,dp数组状态如图:

        最后返回dp[0][s.size()-1]即可

2.代码实现 

class Solution {
public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(),vector<int>(s.size(),0));int length = 0;for(int i=s.size()-1; i>=0; i--){for(int j=i;j<s.size();j++){ //根据区间定义,i必须比j小.if(s[i] == s[j]){if(j-i==0){dp[i][j] = 1;}else{dp[i][j] =  dp[i+1][j-1]+2;}}else{dp[i][j] = max(dp[i+1][j],dp[i][j-1]);}}}return dp[0][s.size()-1];}
};

时间复杂度:O(n^2)

空间复杂度:O(n^2)

这篇关于代码随想录算法训练营第六十天| LeetCode647. 回文子串 、516.最长回文子序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978648

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Java强制转化示例代码详解

《Java强制转化示例代码详解》:本文主要介绍Java编程语言中的类型转换,包括基本类型之间的强制类型转换和引用类型的强制类型转换,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录引入基本类型强制转换1.数字之间2.数字字符之间引入引用类型的强制转换总结引入在Java编程语言中,类型转换(无论

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

Vue 调用摄像头扫描条码功能实现代码

《Vue调用摄像头扫描条码功能实现代码》本文介绍了如何使用Vue.js和jsQR库来实现调用摄像头并扫描条码的功能,通过安装依赖、获取摄像头视频流、解析条码等步骤,实现了从开始扫描到停止扫描的完整流... 目录实现步骤:代码实现1. 安装依赖2. vue 页面代码功能说明注意事项以下是一个基于 Vue.js