代码随想录算法训练营第六十天| LeetCode647. 回文子串 、516.最长回文子序列

本文主要是介绍代码随想录算法训练营第六十天| LeetCode647. 回文子串 、516.最长回文子序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LeetCode647. 回文子串 

题目链接/文章讲解/视频讲解:https://programmercarl.com/0647.%E5%9B%9E%E6%96%87%E5%AD%90%E4%B8%B2.html

状态:已解决

1.思路 

        这道题我只想出来了暴力解法,动规解法并没有想出来。根据视频讲解才把它想出来。

(1)确定dp数组以及下标含义:

        本题如果定义dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。那要怎么确定dp数组呢?根据回文串的性质:

        当我们已知s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。也就是说,当确定一个范围是回文串时,我们就要确定这个范围向外面延申的两头是不是相等的,限定范围需要起点和终点,故dp数组应该是二维的:回文串的下表范围[i,j],则判断子字符串(下表范围[i + 1, j - 1])) 是否是回文。

        故dp数组定义为:dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

(2)确定递推公式: 

确定递推公式时,由于要考虑 i+1 和 j-1 的边界问题,需要分析如下几种情况:

当s[i]与s[j]不相等,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

(3)初始化dp数组:

        因为值都会被覆盖,且不可能初始化true(一开始全部都为回文串了,后面无论怎么判断也都会是true),故统一初始化为false。

(4)确定遍历顺序:

根据递推公式,情况三是根据dp[i + 1][j - 1]是否为true,来判断dp[i][j]是否为true的,故需要确定左下角的值,因此遍历顺序应该是从下到上、从左到右。(或者以列遍历)

(5) 举例推导dp数组:

举例,输入:"aaa",dp[i][j]状态如下:

2.代码实现 

class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(),vector<bool>(s.size(),false));int result = 0;for(int i=s.size()-1; i>=0; i--){for(int j=i;j<s.size();j++){ //根据区间定义,i必须比j小.if(s[i] == s[j]){if(j-i<=1){result++;dp[i][j] = true;}else if(dp[i+1][j-1]){result++;dp[i][j] = true;}}}}return result;}
};

时间复杂度:O(n^2)

空间复杂度:O(n^2)

二、516.最长回文子序列 

题目链接/文章讲解/视频讲解:https://programmercarl.com/0516.%E6%9C%80%E9%95%BF%E5%9B%9E%E6%96%87%E5%AD%90%E5%BA%8F%E5%88%97.html

状态:已解决

1.思路 

        这题比上道题简单一点,因为求的是回文子序列不要求连续了。

(1)确定dp数组以及下标含义:

        dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

(2)确定递推公式:

        还是分两种大情况:

① 如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

② 如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

(3)初始化dp数组:

        首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

        其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。        

        这里我为了提高效率就把初始化定义在递推公式的循环里面了。

(4)确定遍历顺序:

        从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:

        故要从下往上、从左到右。

(5)举例推导dp数组:

输入s:"cbbd" 为例,dp数组状态如图:

        最后返回dp[0][s.size()-1]即可

2.代码实现 

class Solution {
public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(),vector<int>(s.size(),0));int length = 0;for(int i=s.size()-1; i>=0; i--){for(int j=i;j<s.size();j++){ //根据区间定义,i必须比j小.if(s[i] == s[j]){if(j-i==0){dp[i][j] = 1;}else{dp[i][j] =  dp[i+1][j-1]+2;}}else{dp[i][j] = max(dp[i+1][j],dp[i][j-1]);}}}return dp[0][s.size()-1];}
};

时间复杂度:O(n^2)

空间复杂度:O(n^2)

这篇关于代码随想录算法训练营第六十天| LeetCode647. 回文子串 、516.最长回文子序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978648

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(