浅析扩散模型与图像生成【应用篇】(二十三)——Imagic

2024-05-11 03:36

本文主要是介绍浅析扩散模型与图像生成【应用篇】(二十三)——Imagic,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

23. Imagic: Text-Based Real Image Editing with Diffusion Models

  该文提出一种基于文本的真实图像编辑方法,能够根据纯文本提示,实现复杂的图像编辑任务,如改变一个或多个物体的位姿和组成,并且保持其他特征不变。相比于其他文本-图像编辑工作,Imagic具备更丰富的编辑方式,并且能够更好的保留编辑对象原有的特征。下面先展示一波结果,秀一下肌肉。可以看到编辑的效果非常逼真,而且是对图像中目标物体直接进行编辑,而不是重新生成一个新的对象。
在这里插入图片描述
  基于扩散模型的文本-图像编辑和生成的基础理论我这里就不再赘述了,不清楚的可以参考本博客该专栏下的其他文章。笼统点来讲,我们要把输入的文本描述转化为一个嵌入式向量,并将其作为一种条件信息引入到图像生成过程中,从而实现图像的编辑。本文提出的方法包含三个步骤:文本嵌入特征的优化,扩散模型的微调,以及特征插值与图像生成,如下图所示。
在这里插入图片描述
  首先,输入的文本描述经过一个文本编码器得到一个目标文本特征 e t g t e_{tgt} etgt,并使用一个预训练好的文本-图像生成模型 f θ f_{\theta} fθ对文本特征 e t g t e_{tgt} etgt进行优化,损失函数如下 L ( x , e , θ ) = E t , ϵ [ ∥ ϵ − f θ ( x t , t , e ) ∥ 2 2 ] \mathcal{L}(\mathbf{x},\mathbf{e},\theta)=\mathbb{E}_{t,\epsilon}\left[\left\|\boldsymbol{\epsilon}-f_{\theta}(\mathbf{x}_{t},t,\mathbf{e})\right\|_{2}^{2}\right] L(x,e,θ)=Et,ϵ[ϵfθ(xt,t,e)22]其中初始的 e \mathbf{e} e就是我们上文得到的 e t g t e_{tgt} etgt,在这个过程中生成模型 f θ f_{\theta} fθ的参数是固定不变的。随着训练的过程, e t g t e_{tgt} etgt被不断地更新,使其与输入图像 x x x的特征更加对齐,最终得到优化后的文本特征 e o p t e_{opt} eopt
  然后,我们再固定输入的文本特征 e o p t e_{opt} eopt不变,还是用上面的损失函数,对生成模型 f θ f_{\theta} fθ进行微调训练;同时如果还有其他的辅助模型,如提升分辨率的模型,也在这个过程中进行微调,只不过文本条件仍使用目标文本特征 e t g t e_{tgt} etgt,而不是优化过的 e o p t e_{opt} eopt。不要问为什么,问就是实验显示 e t g t e_{tgt} etgt效果更好。
  最后,我们使用一个线性插值函数来计算 e t g t e_{tgt} etgt e o p t e_{opt} eopt之间的插值,如下式 e ˉ = η ⋅ e t g t + ( 1 − η ) ⋅ e o p t \bar{\mathbf{e}}=\eta\cdot\mathbf{e}_{tgt}+(1-\eta)\cdot\mathbf{e}_{opt} eˉ=ηetgt+(1η)eopt η \eta η是可调的超参数,将插值得到的条件 e ˉ \bar{\mathbf{e}} eˉ输入到微调后的文本-图像生成模型中,即可得到对应的编辑结果。如下图所示,通过调整 η \eta η的大小,我们可以得到有原始图像到目标图像的渐进变化过程,作者表示 η \eta η取值为0.6-0.8时编辑的效果是最好的。
在这里插入图片描述
  作者与许多现有的图像编辑方法进行了比较,结果如下图所示
在这里插入图片描述

这篇关于浅析扩散模型与图像生成【应用篇】(二十三)——Imagic的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978396

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为