kubelet gc源码分析

2024-05-10 17:58
文章标签 分析 源码 gc kubelet

本文主要是介绍kubelet gc源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

kubelet是负载干活的组件,它会定期的清理多余死掉的容器和镜像,这篇blog基于kubernetes1.7.6的代码,关于gc的深入源码分析
好了,先看gc是随着kubelet启动而启动的pkg/kubelet/kubelet.go,

func (kl *Kubelet) StartGarbageCollection() {loggedContainerGCFailure := falsego wait.Until(func() {if err := kl.containerGC.GarbageCollect(); err != nil {glog.Errorf("Container garbage collection failed: %v", err)kl.recorder.Eventf(kl.nodeRef, v1.EventTypeWarning, events.ContainerGCFailed, err.Error())loggedContainerGCFailure = true} else {var vLevel glog.Level = 4if loggedContainerGCFailure {vLevel = 1loggedContainerGCFailure = false}glog.V(vLevel).Infof("Container garbage collection succeeded")}}, ContainerGCPeriod, wait.NeverStop)prevImageGCFailed := falsego wait.Until(func() {if err := kl.imageManager.GarbageCollect(); err != nil {if prevImageGCFailed {glog.Errorf("Image garbage collection failed multiple times in a row: %v", err)// Only create an event for repeated failureskl.recorder.Eventf(kl.nodeRef, v1.EventTypeWarning, events.ImageGCFailed, err.Error())} else {glog.Errorf("Image garbage collection failed once. Stats initialization may not have completed yet: %v", err)}prevImageGCFailed = true} else {var vLevel glog.Level = 4if prevImageGCFailed {vLevel = 1prevImageGCFailed = false}glog.V(vLevel).Infof("Image garbage collection succeeded")}}, ImageGCPeriod, wait.NeverStop)
}

上面代码分别启动的容器的gc(containerGC.GarbageCollect())和镜像的gc(imageManager.GarbageCollect()),
先看容器的gc pkg/kubelet/kuberuntime/kuberuntime_gc.go,

func (cgc *containerGC) GarbageCollect(gcPolicy kubecontainer.ContainerGCPolicy, allSourcesReady bool, evictNonDeletedPods bool) error {// Remove evictable containersif err := cgc.evictContainers(gcPolicy, allSourcesReady, evictNonDeletedPods); err != nil {return err}// Remove sandboxes with zero containersif err := cgc.evictSandboxes(evictNonDeletedPods); err != nil {return err}// Remove pod sandbox log directoryreturn cgc.evictPodLogsDirectories(allSourcesReady)
}

这里删除容器分为两个部分,一个是删除业务容器,一个是删除Sandbox容器,当然最后都会去删除他们的日志目录。

业务容器删除

先看删除业务容器的过程

func (cgc *containerGC) evictContainers(gcPolicy kubecontainer.ContainerGCPolicy, allSourcesReady bool, evictNonDeletedPods bool) error {// Separate containers by evict units.evictUnits, err := cgc.evictableContainers(gcPolicy.MinAge)if err != nil {return err}// Remove deleted pod containers if all sources are ready.if allSourcesReady {for key, unit := range evictUnits {if cgc.isPodDeleted(key.uid) || evictNonDeletedPods {cgc.removeOldestN(unit, len(unit)) // Remove all.delete(evictUnits, key)}}}// Enforce max containers per evict unit.if gcPolicy.MaxPerPodContainer >= 0 {cgc.enforceMaxContainersPerEvictUnit(evictUnits, gcPolicy.MaxPerPodContainer)}// Enforce max total number of containers.if gcPolicy.MaxContainers >= 0 && evictUnits.NumContainers() > gcPolicy.MaxContainers {// Leave an equal number of containers per evict unit (min: 1).numContainersPerEvictUnit := gcPolicy.MaxContainers / evictUnits.NumEvictUnits()if numContainersPerEvictUnit < 1 {numContainersPerEvictUnit = 1}cgc.enforceMaxContainersPerEvictUnit(evictUnits, numContainersPerEvictUnit)// If we still need to evict, evict oldest first.numContainers := evictUnits.NumContainers()if numContainers > gcPolicy.MaxContainers {flattened := make([]containerGCInfo, 0, numContainers)for key := range evictUnits {flattened = append(flattened, evictUnits[key]...)}sort.Sort(byCreated(flattened))cgc.removeOldestN(flattened, numContainers-gcPolicy.MaxContainers)}}return nil
}

上面的代码做的多层判断,首先是删除超过gcPolicy.MinAge时间死掉pod的容器,然后删除单个pod运行最大死亡容器gcPolicy.MaxPerPodContainer,最后是删除整个机器上面死亡容器的上限。
evictContainers是过去可以驱逐的容器(退出且超过gcPolicy.MinAge时间的容器)具体看下面:

func (cgc *containerGC) evictableContainers(minAge time.Duration) (containersByEvictUnit, error) {containers, err := cgc.manager.getKubeletContainers(true)...for _, container := range containers {if container.State == runtimeapi.ContainerState_CONTAINER_RUNNING {continue}createdAt := time.Unix(0, container.CreatedAt)if newestGCTime.Before(createdAt) {continue}...
}

然后是删除单个pod死亡容器上限的

func (cgc *containerGC) enforceMaxContainersPerEvictUnit(evictUnits containersByEvictUnit, MaxContainers int) {for key := range evictUnits {toRemove := len(evictUnits[key]) - MaxContainersif toRemove > 0 {evictUnits[key] = cgc.removeOldestN(evictUnits[key], toRemove)}}
}

最后是删除超过上限的死亡容器

numContainers := evictUnits.NumContainers()if numContainers > gcPolicy.MaxContainers {flattened := make([]containerGCInfo, 0, numContainers)for key := range evictUnits {flattened = append(flattened, evictUnits[key]...)}sort.Sort(byCreated(flattened))cgc.removeOldestN(flattened, numContainers-gcPolicy.MaxContainers)}

Sandbox容器删除

然后是删除Sandbox容器,这里pkg/kubelet/kuberuntime/kuberuntime_gc.go

func (cgc *containerGC) evictSandboxes(evictNonDeletedPods bool) error {containers, err := cgc.manager.getKubeletContainers(true)if err != nil {return err}sandboxes, err := cgc.manager.getKubeletSandboxes(true)if err != nil {return err}sandboxesByPod := make(sandboxesByPodUID)for _, sandbox := range sandboxes {podUID := types.UID(sandbox.Metadata.Uid)sandboxInfo := sandboxGCInfo{id:         sandbox.Id,createTime: time.Unix(0, sandbox.CreatedAt),}// Set ready sandboxes to be active.if sandbox.State == runtimeapi.PodSandboxState_SANDBOX_READY {sandboxInfo.active = true}// 查询这个Sandbox是否有关联容器hasContainers := falsesandboxID := sandbox.Idfor _, container := range containers {if container.PodSandboxId == sandboxID {hasContainers = truebreak}}if hasContainers {sandboxInfo.active = true}sandboxesByPod[podUID] = append(sandboxesByPod[podUID], sandboxInfo)}// Sort the sandboxes by age.for uid := range sandboxesByPod {sort.Sort(sandboxByCreated(sandboxesByPod[uid]))}for podUID, sandboxes := range sandboxesByPod {if cgc.isPodDeleted(podUID) || evictNonDeletedPods {// 如果这个pod是要被驱逐出这台机器的话,所以的Sandbox直接全部回收cgc.removeOldestNSandboxes(sandboxes, len(sandboxes))} else {// 如果不是则保留最新的一个cgc.removeOldestNSandboxes(sandboxes, len(sandboxes)-1)}}return nil
}

与上面业务容器不同的是,Sandbox的删除需要满足三个条件,缺一不可,第一是必须不能是ready状态的,第二Sandbox不能关联容器,第三如果pod不在这个节点上可以全部删除,如果仍然在这个节点上,则还需要保留最新的一个。

这篇关于kubelet gc源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977152

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号