Nanopc T4 使用OpenCV

2024-05-10 16:20
文章标签 使用 opencv t4 nanopc

本文主要是介绍Nanopc T4 使用OpenCV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

识别长方形: 

import cv2
import cv2 as cv
import time
import platform
import os# 获取操作系统类型
os_type = platform.system()
if os_type == "Windows":# Windows系统cap = cv.VideoCapture(0)  # 使用第零个摄像头
elif os_type == "Linux":# Linux系统cap = cv.VideoCapture(10)  # 使用第十个摄像头if not cap.isOpened():print("Cannot capture from camera. Exiting.")os._exit(1)  # 退出程序
last_time = time.time()while (True):ret, frame = cap.read()imgContour = frame.copy()imgCanny = cv2.Canny(frame, 60, 60)  # Canny算子边缘检测contours, hierarchy = cv2.findContours(imgCanny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 寻找轮廓点for obj in contours:area = cv2.contourArea(obj)  # 计算轮廓内区域的面积# cv2.drawContours(imgContour, obj, -1, (255, 0, 0), 4)  # 绘制轮廓线perimeter = cv2.arcLength(obj, True)  # 计算轮廓周长approx = cv2.approxPolyDP(obj, 0.02 * perimeter, True)  # 获取轮廓角点坐标CornerNum = len(approx)  # 轮廓角点的数量x, y, w, h = cv2.boundingRect(approx)  # 获取坐标值和宽度、高度if CornerNum == 4:if 90 < w != h > 50:objType = "ChangFangXing"cv2.rectangle(imgContour, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 绘制边界框cv2.putText(imgContour, objType, (x + (w // 2), y + (h // 2)), cv2.FONT_HERSHEY_COMPLEX, 0.6, (0, 0, 0),1)  # 绘制文字cv2.imshow("shape Detection", imgContour)if cv.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv.destroyAllWindows()

识别人脸1:

import cv2
import cv2 as cv
import time
import platform
import os# 获取操作系统类型
os_type = platform.system()
if os_type == "Windows":# Windows系统cap = cv.VideoCapture(0)  # 使用第零个摄像头
elif os_type == "Linux":# Linux系统cap = cv.VideoCapture(10)  # 使用第十个摄像头if not cap.isOpened():print("Cannot capture from camera. Exiting.")os._exit(1)  # 退出程序
last_time = time.time()img = cv.imread("D:\WorkSpace\Python\qsc.png")def template_matching(img_match, img, arithmetic_model):'''【作用】进行图片模板匹配【参数1】模板图片【参数2】进行匹配的图片【参数3】算法模型【返回】无'''# 进行模板匹配result = cv.matchTemplate(img, img_match, arithmetic_model)# 获取最小最大匹配值,还有对应的坐标min_value, max_value, min_coordinate, max_coordinate = cv.minMaxLoc(result)# 默认最佳最大值,当算法为CV_TM_SQDIFF或CV_TM_SQDIFF_NORMED时改为最小值best_coordinate = max_coordinateif arithmetic_model == cv.TM_SQDIFF or arithmetic_model == cv.TM_SQDIFF_NORMED:best_coordinate = min_coordinate# 获取匹配图片的高和宽m_height, m_width = img_match.shape[:2]# 矩形的起始点和结束点r_start = best_coordinater_end = (best_coordinate[0] + m_width, best_coordinate[1] + m_height);# 矩形的颜色和线的宽度r_color = (0, 100, 40)r_line_width = 2# 绘制矩形并展示cv.rectangle(img, r_start, r_end, r_color, r_line_width)cv.imshow("Qu ShiChao", img)while (True):ret, frame = cap.read()template_matching(img, frame, cv.TM_SQDIFF)if cv.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv.destroyAllWindows()

通模型识别人脸

import cv2
import cv2 as cv
import time
import platform
import os# 获取操作系统类型
os_type = platform.system()
if os_type == "Windows":# Windows系统cap = cv.VideoCapture(0)  # 使用第零个摄像头
elif os_type == "Linux":# Linux系统cap = cv.VideoCapture(10)  # 使用第十个摄像头if not cap.isOpened():print("Cannot capture from camera. Exiting.")os._exit(1)  # 退出程序
last_time = time.time()while (True):ret, frame = cap.read()# 这里是你的xml存放路径face_cascade = cv2.CascadeClassifier("D:\WorkSpace\Python\lbpcascade_frontalface.xml")# 开始人脸检测faces = face_cascade.detectMultiScale(frame, scaleFactor=1.03, minNeighbors=6)# 先复制一张图片frame1 = frame.copy()# 在检测到的人脸中操作for x, y, w, h in faces:# 画出人脸框frame1 = cv2.rectangle(frame1, (x, y), (x + w, y + h), (0, 255, 0), 2)# 找出人脸区域face_area = frame1[y:y + h, x:x + w]# 在人脸区域检测人眼cv2.imshow('face', frame1)if cv.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv.destroyAllWindows()

这篇关于Nanopc T4 使用OpenCV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976947

相关文章

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav