Nanopc T4 使用OpenCV

2024-05-10 16:20
文章标签 使用 opencv t4 nanopc

本文主要是介绍Nanopc T4 使用OpenCV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

识别长方形: 

import cv2
import cv2 as cv
import time
import platform
import os# 获取操作系统类型
os_type = platform.system()
if os_type == "Windows":# Windows系统cap = cv.VideoCapture(0)  # 使用第零个摄像头
elif os_type == "Linux":# Linux系统cap = cv.VideoCapture(10)  # 使用第十个摄像头if not cap.isOpened():print("Cannot capture from camera. Exiting.")os._exit(1)  # 退出程序
last_time = time.time()while (True):ret, frame = cap.read()imgContour = frame.copy()imgCanny = cv2.Canny(frame, 60, 60)  # Canny算子边缘检测contours, hierarchy = cv2.findContours(imgCanny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 寻找轮廓点for obj in contours:area = cv2.contourArea(obj)  # 计算轮廓内区域的面积# cv2.drawContours(imgContour, obj, -1, (255, 0, 0), 4)  # 绘制轮廓线perimeter = cv2.arcLength(obj, True)  # 计算轮廓周长approx = cv2.approxPolyDP(obj, 0.02 * perimeter, True)  # 获取轮廓角点坐标CornerNum = len(approx)  # 轮廓角点的数量x, y, w, h = cv2.boundingRect(approx)  # 获取坐标值和宽度、高度if CornerNum == 4:if 90 < w != h > 50:objType = "ChangFangXing"cv2.rectangle(imgContour, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 绘制边界框cv2.putText(imgContour, objType, (x + (w // 2), y + (h // 2)), cv2.FONT_HERSHEY_COMPLEX, 0.6, (0, 0, 0),1)  # 绘制文字cv2.imshow("shape Detection", imgContour)if cv.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv.destroyAllWindows()

识别人脸1:

import cv2
import cv2 as cv
import time
import platform
import os# 获取操作系统类型
os_type = platform.system()
if os_type == "Windows":# Windows系统cap = cv.VideoCapture(0)  # 使用第零个摄像头
elif os_type == "Linux":# Linux系统cap = cv.VideoCapture(10)  # 使用第十个摄像头if not cap.isOpened():print("Cannot capture from camera. Exiting.")os._exit(1)  # 退出程序
last_time = time.time()img = cv.imread("D:\WorkSpace\Python\qsc.png")def template_matching(img_match, img, arithmetic_model):'''【作用】进行图片模板匹配【参数1】模板图片【参数2】进行匹配的图片【参数3】算法模型【返回】无'''# 进行模板匹配result = cv.matchTemplate(img, img_match, arithmetic_model)# 获取最小最大匹配值,还有对应的坐标min_value, max_value, min_coordinate, max_coordinate = cv.minMaxLoc(result)# 默认最佳最大值,当算法为CV_TM_SQDIFF或CV_TM_SQDIFF_NORMED时改为最小值best_coordinate = max_coordinateif arithmetic_model == cv.TM_SQDIFF or arithmetic_model == cv.TM_SQDIFF_NORMED:best_coordinate = min_coordinate# 获取匹配图片的高和宽m_height, m_width = img_match.shape[:2]# 矩形的起始点和结束点r_start = best_coordinater_end = (best_coordinate[0] + m_width, best_coordinate[1] + m_height);# 矩形的颜色和线的宽度r_color = (0, 100, 40)r_line_width = 2# 绘制矩形并展示cv.rectangle(img, r_start, r_end, r_color, r_line_width)cv.imshow("Qu ShiChao", img)while (True):ret, frame = cap.read()template_matching(img, frame, cv.TM_SQDIFF)if cv.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv.destroyAllWindows()

通模型识别人脸

import cv2
import cv2 as cv
import time
import platform
import os# 获取操作系统类型
os_type = platform.system()
if os_type == "Windows":# Windows系统cap = cv.VideoCapture(0)  # 使用第零个摄像头
elif os_type == "Linux":# Linux系统cap = cv.VideoCapture(10)  # 使用第十个摄像头if not cap.isOpened():print("Cannot capture from camera. Exiting.")os._exit(1)  # 退出程序
last_time = time.time()while (True):ret, frame = cap.read()# 这里是你的xml存放路径face_cascade = cv2.CascadeClassifier("D:\WorkSpace\Python\lbpcascade_frontalface.xml")# 开始人脸检测faces = face_cascade.detectMultiScale(frame, scaleFactor=1.03, minNeighbors=6)# 先复制一张图片frame1 = frame.copy()# 在检测到的人脸中操作for x, y, w, h in faces:# 画出人脸框frame1 = cv2.rectangle(frame1, (x, y), (x + w, y + h), (0, 255, 0), 2)# 找出人脸区域face_area = frame1[y:y + h, x:x + w]# 在人脸区域检测人眼cv2.imshow('face', frame1)if cv.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv.destroyAllWindows()

这篇关于Nanopc T4 使用OpenCV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976947

相关文章

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3