代码随想录算法训练营Day35 | 435. 无重叠区间、763.划分字母区间、56. 合并区间 | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day35 | 435. 无重叠区间、763.划分字母区间、56. 合并区间 | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 435. 无重叠区间
    • 做题
    • 基于左边界的贪心算法
    • 基于左边界,把452.用最少数量的箭引爆气球代码稍做修改
  • 763.划分字母区间
    • 做题
    • 看文章
  • 56. 合并区间
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

435. 无重叠区间

代码随想录:435. 无重叠区间
Leetcode:435. 无重叠区间

做题

无思路。

基于左边界的贪心算法

有点难理解,需要仔细琢磨。

class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:if not intervals:return 0intervals.sort(key=lambda x: x[0])  # 按照左边界升序排序count = 0  # 记录重叠区间数量for i in range(1, len(intervals)):if intervals[i][0] < intervals[i - 1][1]:  # 存在重叠区间intervals[i][1] = min(intervals[i - 1][1], intervals[i][1])  # 更新重叠区间的右边界count += 1return count

时间复杂度:O(nlog n) ,有一个快排
空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间

基于左边界,把452.用最少数量的箭引爆气球代码稍做修改

会452题的话,这样看比较好理解。

class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:if not intervals:return 0intervals.sort(key=lambda x: x[0])  # 按照左边界升序排序result = 1  # 不重叠区间数量,初始化为1,因为至少有一个不重叠的区间for i in range(1, len(intervals)):if intervals[i][0] >= intervals[i - 1][1]:  # 没有重叠result += 1else:  # 重叠情况intervals[i][1] = min(intervals[i - 1][1], intervals[i][1])  # 更新重叠区间的右边界return len(intervals) - result

763.划分字母区间

代码随想录:763.划分字母区间
Leetcode:763.划分字母区间

做题

思路:先遍历一遍,保存各字母的频次;再遍历一次,实时记录当前各字母的频次,当各字母频次均达上限时,才能跳入下一个字母区间。

看文章

可以分为如下两步:

  1. 统计每一个字符最后出现的位置
  2. 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

自己动手实现一下:

class Solution:def partitionLabels(self, s: str) -> List[int]:pos_right = [0] * 26for i in range(len(s)):cur = ord(s[i]) - ord('a')pos_right[cur] = max(i, pos_right[cur])right = 0res = []count = 0for i in range(len(s)):cur = ord(s[i]) - ord('a')right = max(right, pos_right[cur])count += 1if i == right:res.append(count)count = 0right = i+1return res

上述是用数组储存,也可以用hash表存储。具体如下:

class Solution:def partitionLabels(self, s: str) -> List[int]:last_occurrence = {}  # 存储每个字符最后出现的位置for i, ch in enumerate(s):last_occurrence[ch] = iresult = []start = 0end = 0for i, ch in enumerate(s):end = max(end, last_occurrence[ch])  # 找到当前字符出现的最远位置if i == end:  # 如果当前位置是最远位置,表示可以分割出一个区间result.append(end - start + 1)start = i + 1return result

时间复杂度:O(n)
空间复杂度:O(1),使用的hash数组是固定大小

56. 合并区间

代码随想录:56. 合并区间
Leetcode:56. 合并区间

做题

有点类似射箭,排序后,对重叠的区间求并集即可。

class Solution:def merge(self, intervals: List[List[int]]) -> List[List[int]]:intervals.sort(key=lambda x:x[0])left = intervals[0][0]right = intervals[0][1]res = []for i in range(1, len(intervals)):if intervals[i][0] <= right and intervals[i][1] >= left:left = min(intervals[i][0], left)right = max(intervals[i][1], right)else:res.append([left, right])left = intervals[i][0]right = intervals[i][1]res.append([left, right])return res

时间复杂度: O(nlogn)
空间复杂度: O(logn),排序需要的空间开销

看文章

思路大体一致,处理细节有不同,代码如下:

class Solution:def merge(self, intervals):result = []if len(intervals) == 0:return result  # 区间集合为空直接返回intervals.sort(key=lambda x: x[0])  # 按照区间的左边界进行排序result.append(intervals[0])  # 第一个区间可以直接放入结果集中for i in range(1, len(intervals)):if result[-1][1] >= intervals[i][0]:  # 发现重叠区间# 合并区间,只需要更新结果集最后一个区间的右边界,因为根据排序,左边界已经是最小的result[-1][1] = max(result[-1][1], intervals[i][1])else:result.append(intervals[i])  # 区间不重叠return result

以往忽略的知识点小结

  • 找重叠/不重叠区间,主要是对比当前区间的左边界和上一个区间(可能是变化后)的右边界
  • 划分字母区间:可以用最远字母的index,不需要用频次

个人体会

完成时间:1h20min。
心得:区间的题主要是理解判断思路。

这篇关于代码随想录算法训练营Day35 | 435. 无重叠区间、763.划分字母区间、56. 合并区间 | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976440

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.