python爬取sci论文等一系列网站---通用教程超详细教程

2024-05-10 11:04

本文主要是介绍python爬取sci论文等一系列网站---通用教程超详细教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境准备

确保安装了Python以及requestsBeautifulSoup库。

pip install requests beautifulsoup4

确定爬取目标

选择一个含有SCI论文的网站,了解该网站的内容布局和数据结构。

(1)在浏览器中访问目标网站,右键点击页面并选择“检查”或使用快捷键(如Chrome浏览器的Ctrl+Shift+I)打开开发者工具。

(2)在“元素”标签页中查看HTML源代码,寻找包含论文信息的部分。

(3)使用开发者工具的选择功能,点击页面中的论文标题或其他元素,开发者工具会直接高亮显示该元素在HTML中的位置。

(4)别论文信息所在的HTML标签和类名(class),这些信息将在之后的爬虫脚本中用来定位和提取数据。

<blockquote class="abstract mathjax"><span class="descriptor">Abstract:</span>Dynamic networks are ubiquitous for modelling sequential graph-structured data, e.g., brain connectome, population flows and messages exchanges. In this work, we consider dynamic networks that are temporal sequences of graph snapshots, and aim at detecting abrupt changes in their structure. This task is often termed network change-point detection and has numerous applications, such as fraud detection or physical motion monitoring. Leveraging a graph neural network model, we design a method to perform online network change-point detection that can adapt to the specific network domain and localise changes with no delay. The main novelty of our method is to use a siamese graph neural network architecture for learning a data-driven graph similarity function, which allows to effectively compare the current graph and its recent history. Importantly, our method does not require prior knowledge on the network generative distribution and is agnostic to the type of change-points; moreover, it can be applied to a large variety of networks, that include for instance edge weights and node attributes. We show on synthetic and real data that our method enjoys a number of benefits: it is able to learn an adequate graph similarity function for performing online network change-point detection in diverse types of change-point settings, and requires a shorter data history to detect changes than most existing state-of-the-art baselines.</blockquote>

发送HTTP请求

import requests
url = "目标网站的URL"
response = requests.get(url)
# 检查请求是否成功
if response.status_code == 200:print("请求成功")
else:print("请求失败")

 这里,requests.get(url)发送一个GET请求到指定的URL,response.status_code检查响应状态码。

解析网页内容

from bs4 import BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')

使用BeautifulSoup解析服务器响应的HTML内容。response.text包含了网页的文本数据。

数据提取

从网页中提取有用信息,如论文的标题、作者、摘要等。

papers = soup.find_all("div", class_="paper")
for paper in papers:title = paper.find("h2").textauthors = paper.find("span", class_="authors").textabstract = paper.find("div", class_="abstract").textprint(f"标题:{title}\n作者:{authors}\n摘要:{abstract}")

find_all查找包含论文信息的所有div元素,text属性用来获取元素中的文本。

存储数据

将提取的数据保存到本地文件或数据库。

with open("papers.txt", "w") as file:for paper in papers:file.write(f"标题:{title}\n作者:{authors}\n摘要:{abstract}\n\n")

使用with语句确保文件正确关闭,file.write将信息写入文件。

这个流程详尽地介绍了如何通过编程自动化地从网站上获取科研论文的信息,有助于读者学习和实践网络爬虫技术。

这篇关于python爬取sci论文等一系列网站---通用教程超详细教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976257

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1