InternLM-Chat-7B部署调用-个人记录

2024-05-10 08:36

本文主要是介绍InternLM-Chat-7B部署调用-个人记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、环境准备

pip install modelscope==1.9.5
pip install transformers==4.35.2

二、下载模型

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/home/bingxing2/ailab/group/ai4agr/wzf/LLM/models', revision='master')

使用modelscope(魔塔社区)中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

三、终端运行模型

新建一个 demo.py 文件,将以下代码填入其中,之后直接使用python命令执行脚本:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM# 指定模型路径
model_name_or_path = "/home/bingxing2/ailab/group/ai4agr/wzf/LLM/models/InternLM-Chat-7B/Shanghai_AI_Laboratory/internlm-chat-7b"# 加载预训练分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model.eval()print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")if input_text == "exit":break# 使用模型生成响应inputs = tokenizer.encode(input_text, return_tensors="pt")outputs = model.generate(inputs, max_length=50, pad_token_id=tokenizer.eos_token_id)response = tokenizer.decode(outputs[0], skip_special_tokens=True)print(f"Robot >>> {response}")

 运行样例(反应很慢):

四、web端运行

1.克隆代码  

git clone https://gitee.com/internlm/InternLM.git

克隆好项目后需要进入/InternLM/web_demo.py中,将其中的29和33行的模型替换为本地模型路径。例如/root/model/Shanghai_AI_Laboratory/internlm-chat-7b

2.web demo运行

streamlit run /InternLM/web_demo.py --server.address 127.0.0.1 --server.port 6006

3.将端口映射到本地。

进入InternStudio控制台 ,需要邀请码,暂时不写了,搞到了再接着写。请参考实操作业:基于浦语大模型InternLM-Chat-7B 对话、智能体工具调用、图文创作等场景部署实操步骤-CSDN博客

参考:

【InternLM】书生-浦语大模型demo搭建&服务接口部署&本地映射_书生浦语部署-CSDN博客

实操作业:基于浦语大模型InternLM-Chat-7B 对话、智能体工具调用、图文创作等场景部署实操步骤-CSDN博客

大模型实战营第二期——2. 浦语大模型趣味Demo_internlm-chat-7b什么量级-CSDN博客 

这篇关于InternLM-Chat-7B部署调用-个人记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975960

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

在 Windows 上部署 gitblit

在 Windows 上部署 gitblit 在 Windows 上部署 gitblit 缘起gitblit 是什么安装JDK部署 gitblit 下载 gitblit 并解压配置登录注册为 windows 服务 修改 installService.cmd 文件运行 installService.cmd运行 gitblitw.exe查看 services.msc 缘起

HomeBank:开源免费的个人财务管理软件

在个人财务管理领域,找到一个既免费又开源的解决方案并非易事。HomeBank 正是这样一个项目,它不仅提供了强大的功能,还拥有一个活跃的社区,不断推动其发展和完善。 开源免费:HomeBank 是一个完全开源的项目,用户可以自由地使用、修改和分发。用户友好的界面:提供直观的图形用户界面,使得非技术用户也能轻松上手。数据导入支持:支持从 Quicken、Microsoft Money

Solr部署如何启动

Solr部署如何启动 Posted on 一月 10, 2013 in:  Solr入门 | 评论关闭 我刚接触solr,我要怎么启动,这是群里的朋友问得比较多的问题, solr最新版本下载地址: http://www.apache.org/dyn/closer.cgi/lucene/solr/ 1、准备环境 建立一个solr目录,把solr压缩包example目录下的内容复制

【LabVIEW学习篇 - 21】:DLL与API的调用

文章目录 DLL与API调用DLLAPIDLL的调用 DLL与API调用 LabVIEW虽然已经足够强大,但不同的语言在不同领域都有着自己的优势,为了强强联合,LabVIEW提供了强大的外部程序接口能力,包括DLL、CIN(C语言接口)、ActiveX、.NET、MATLAB等等。通过DLL可以使用户很方便地调用C、C++、C#、VB等编程语言写的程序以及windows自带的大

分布式系统的个人理解小结

分布式系统:分的微小服务,以小而独立的业务为单位,形成子系统。 然后分布式系统中需要有统一的调用,形成大的聚合服务。 同时,微服务群,需要有交流(通讯,注册中心,同步,异步),有管理(监控,调度)。 对外服务,需要有控制的对外开发,安全网关。