MongoDB Atlas Vector Search与Amazon Bedrock集成已全面可用

2024-05-10 00:28

本文主要是介绍MongoDB Atlas Vector Search与Amazon Bedrock集成已全面可用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述
亮点前瞻

●MongoDB Atlas Vector Search知识库与Amazon Bedrock的最新集成,将极大加速生成式AI应用的开发。

●诺和诺德利用MongoDB Atlas Vector Search与Amazon Bedrock集成,加速构建AI应用程序。

MongoDB(纳斯达克股票代码:MDB)近日在2024 MongoDB用户大会纽约站大会(MongoDB.local NYC)上宣布,MongoDB Atlas Vector SearchAmazon Bedrock 在知识库上集成现已全面可用,这将助力组织更轻松地利用完全托管的基础模型 (FM) 来构建生成式AI应用程序功能。

作为世界上应用极为广泛的开发者数据平台,MongoDB Atlas能够提供向量数据库功能,使组织能够无缝地使用其实时数据生成AI应用程序。Amazon Bedrock是亚马逊云科技 (AWS) 提供的一项完全托管服务,通过单个API提供来自领先AI公司的高性能基础模型,以及组织构建具有安全性、隐私性和负责任的生成式AI应用程序所需的各项功能。如今,各行各业的客户可以通过集成其专有数据,更加轻松地构建应用程序,并利用生成式AI自主完成复杂任务,并对最终用户的请求做出最新、准确且值得信赖的响应。

MongoDB首席产品官Sahir Azam

“从初创公司到大型企业在内的各种规模的客户都开始利用生成式AI来构建激动人心的全新终端用户体验。然而,许多企业都对AI系统输出的准确性以及保障其专有数据的安全性表示担忧。随着MongoDB Atlas Vector Search与Amazon Bedrock集成的全面可用,MongoDB和亚马逊云科技的共同客户将可以更加便捷地使用托管于AWS环境中的各种基础模型来构建生成式AI应用程序。这些应用程序能够安全地运用MongoDB Atlas中的专有数据,在提高准确性的同时,改善终端用户体验。”

MongoDB Atlas Vector Search与Amazon Bedrock的全新集成将帮助组织更加轻松快捷地在AWS上部署生成式AI应用程序,这些应用程序能够利用经MongoDB Atlas Vector Search处理后的数据,做出更准确、更相关、更值得信赖的响应。与仅存储向量数据的附加解决方案不同,MongoDB Atlas Vector Search是一个高性能、可扩展的向量数据库,可驱动生成式AI应用程序的开发;与此同时,MongoDB Atlas Vector Search还可以与MongoDB全局分布式操作数据库集成,存储和处理组织的所有数据。

借助MongoDB Atlas Vector Search与Amazon Bedrock集成,客户可使用自身的实时操作数据对来自AI21 Labs、Amazon、Anthropic、Cohere、Meta、Mistral AI和Stability AI等公司的基础模型 (如大型语言模型,LLM) 进行定制,将这些数据转换为向量嵌入,与LLM一起使用。利用Agents for Amazon Bedrock的检索增强生成 (RAG) 功能,客户可以使用LLM构建应用程序,对用户查询作出具有相关性且符合情境的响应,而无需手动编码。例如,零售组织可以更加轻松地开发一款生成式AI应用程序,自动处理实时库存请求等多种任务,或在客户退货和换货时根据客户反馈自动给出相关库存商品的建议,为客户提供个性化体验。组织还可以借助MongoDB Atlas Search Nodes,在不影响其核心操作数据库的情况下隔离和扩展其生成式AI工作负载,以实现降本增效,查询时间最多可缩短60%。

依托完全托管的各项功能,此次全新集成使AWS和MongoDB的共同客户能够在整个组织范围内安全地使用生成式AI及其专有数据,在降低运营成本和减少人工操作的同时创造更多价值。

点击了解如何在AWS上使用MongoDB Atlas构建应用程序

亚马逊云科技生成式AI副总裁Vasi Philomin

“十多年来,AWS和MongoDB一直致力于帮助组织通过数据实现业务转型。目前,已有成千上万的组织选择利用Amazon Bedrock来构建生成式AI应用程序,以满足他们的特定需求。如今,随着MongoDB Atlas Vector Search与Amazon Bedrock在知识库领域集成的全面可用,双方的共同客户将能够更加轻松便捷地实现检索增强生成 (RAG),从而帮助他们从数据中获取更多洞察。”

客户案例:诺和诺德

诺和诺德是众多利用MongoDB Atlas Vector Search和Amazon Bedrock集成构建生成式AI应用程序的客户之一。

在这里插入图片描述

诺和诺德成立于1923年,是一家全球领先的生物制药公司,总部位于丹麦。公司致力于推动改变,以战胜糖尿病、肥胖症、罕见疾病和心血管疾病等严重慢性疾病。

诺和诺德内容数字化主管Louise Lind Skov

“我们亟需一种能够缩短临床研究报告撰写时间的解决方案,这样我们就可以更快地找到全新疗法,及时挽救患者生命。借助Amazon Bedrock与MongoDB Atlas集成,我们快速构建了解决方案NovoScribe,使我们成为业内首家在几分钟内而不是数周内生成完整临床研究报告的公司。我们正在大规模拓展该应用,而且与过去相比,整个扩展过程节省了大量资源。Amazon Bedrock和MongoDB Atlas集成将彻底改变全球医疗健康行业的游戏规则。”

关于 MongoDB Atlas

MongoDB Atlas是领先的多云开发者数据平台,以高度灵活、高性能和全球分布式运营数据库为核心,加速并简化数据构建过程。MongoDB Atlas在一个统一的环境中提供了一套全面的数据和应用服务,使开发者团队能够快速构建满足现代应用所需的安全性、性能和规模。数以百万计的开发者以及包括思科 (Cisco)、GE医疗 (GE Healthcare)、财捷集团 (Intuit)、丰田金融服务、威瑞森(Verizon)等在内的数以万计的客户每天在整个企业范围内通过MongoDB Atlas以更快、更高效、更具成本效益的方式进行创新。

点击获得更多MongoDB Atlas信息

关于 MongoDB

MongoDB总部位于美国纽约,致力于释放软件与数据潜能,以赋能创新者开创新行业或变革、颠覆现有行业。由开发者构建并服务开发者的MongoDB开发者数据平台,是一个集成了多个相关服务的数据库,可帮助开发团队应对当今市场对各种现代应用不断增长的需求,并提供统一且一致的用户体验。MongoDB在全球100多个国家和地区拥有数万家客户。自2007年以来,MongoDB数据库平台的下载量达数亿次,MongoDB University课程已培养了数百万名开发者。

欲了解更多信息,点击访问MongoDB中文官网


👉点击访问 MongoDB中文官网
👉立即免费试用 MongoDB Atlas
☎️需要支持?欢迎联系我们:400-8662988
✅欢迎关注MongoDB微信订阅号(MongoDB-China),及时获取最新资讯。

这篇关于MongoDB Atlas Vector Search与Amazon Bedrock集成已全面可用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/974908

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

centos7基于keepalived+nginx部署k8s1.26.0高可用集群

《centos7基于keepalived+nginx部署k8s1.26.0高可用集群》Kubernetes是一个开源的容器编排平台,用于自动化地部署、扩展和管理容器化应用程序,在生产环境中,为了确保集... 目录一、初始化(所有节点都执行)二、安装containerd(所有节点都执行)三、安装docker-

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外