MongoDB Atlas Vector Search与Amazon Bedrock集成已全面可用

2024-05-10 00:28

本文主要是介绍MongoDB Atlas Vector Search与Amazon Bedrock集成已全面可用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述
亮点前瞻

●MongoDB Atlas Vector Search知识库与Amazon Bedrock的最新集成,将极大加速生成式AI应用的开发。

●诺和诺德利用MongoDB Atlas Vector Search与Amazon Bedrock集成,加速构建AI应用程序。

MongoDB(纳斯达克股票代码:MDB)近日在2024 MongoDB用户大会纽约站大会(MongoDB.local NYC)上宣布,MongoDB Atlas Vector SearchAmazon Bedrock 在知识库上集成现已全面可用,这将助力组织更轻松地利用完全托管的基础模型 (FM) 来构建生成式AI应用程序功能。

作为世界上应用极为广泛的开发者数据平台,MongoDB Atlas能够提供向量数据库功能,使组织能够无缝地使用其实时数据生成AI应用程序。Amazon Bedrock是亚马逊云科技 (AWS) 提供的一项完全托管服务,通过单个API提供来自领先AI公司的高性能基础模型,以及组织构建具有安全性、隐私性和负责任的生成式AI应用程序所需的各项功能。如今,各行各业的客户可以通过集成其专有数据,更加轻松地构建应用程序,并利用生成式AI自主完成复杂任务,并对最终用户的请求做出最新、准确且值得信赖的响应。

MongoDB首席产品官Sahir Azam

“从初创公司到大型企业在内的各种规模的客户都开始利用生成式AI来构建激动人心的全新终端用户体验。然而,许多企业都对AI系统输出的准确性以及保障其专有数据的安全性表示担忧。随着MongoDB Atlas Vector Search与Amazon Bedrock集成的全面可用,MongoDB和亚马逊云科技的共同客户将可以更加便捷地使用托管于AWS环境中的各种基础模型来构建生成式AI应用程序。这些应用程序能够安全地运用MongoDB Atlas中的专有数据,在提高准确性的同时,改善终端用户体验。”

MongoDB Atlas Vector Search与Amazon Bedrock的全新集成将帮助组织更加轻松快捷地在AWS上部署生成式AI应用程序,这些应用程序能够利用经MongoDB Atlas Vector Search处理后的数据,做出更准确、更相关、更值得信赖的响应。与仅存储向量数据的附加解决方案不同,MongoDB Atlas Vector Search是一个高性能、可扩展的向量数据库,可驱动生成式AI应用程序的开发;与此同时,MongoDB Atlas Vector Search还可以与MongoDB全局分布式操作数据库集成,存储和处理组织的所有数据。

借助MongoDB Atlas Vector Search与Amazon Bedrock集成,客户可使用自身的实时操作数据对来自AI21 Labs、Amazon、Anthropic、Cohere、Meta、Mistral AI和Stability AI等公司的基础模型 (如大型语言模型,LLM) 进行定制,将这些数据转换为向量嵌入,与LLM一起使用。利用Agents for Amazon Bedrock的检索增强生成 (RAG) 功能,客户可以使用LLM构建应用程序,对用户查询作出具有相关性且符合情境的响应,而无需手动编码。例如,零售组织可以更加轻松地开发一款生成式AI应用程序,自动处理实时库存请求等多种任务,或在客户退货和换货时根据客户反馈自动给出相关库存商品的建议,为客户提供个性化体验。组织还可以借助MongoDB Atlas Search Nodes,在不影响其核心操作数据库的情况下隔离和扩展其生成式AI工作负载,以实现降本增效,查询时间最多可缩短60%。

依托完全托管的各项功能,此次全新集成使AWS和MongoDB的共同客户能够在整个组织范围内安全地使用生成式AI及其专有数据,在降低运营成本和减少人工操作的同时创造更多价值。

点击了解如何在AWS上使用MongoDB Atlas构建应用程序

亚马逊云科技生成式AI副总裁Vasi Philomin

“十多年来,AWS和MongoDB一直致力于帮助组织通过数据实现业务转型。目前,已有成千上万的组织选择利用Amazon Bedrock来构建生成式AI应用程序,以满足他们的特定需求。如今,随着MongoDB Atlas Vector Search与Amazon Bedrock在知识库领域集成的全面可用,双方的共同客户将能够更加轻松便捷地实现检索增强生成 (RAG),从而帮助他们从数据中获取更多洞察。”

客户案例:诺和诺德

诺和诺德是众多利用MongoDB Atlas Vector Search和Amazon Bedrock集成构建生成式AI应用程序的客户之一。

在这里插入图片描述

诺和诺德成立于1923年,是一家全球领先的生物制药公司,总部位于丹麦。公司致力于推动改变,以战胜糖尿病、肥胖症、罕见疾病和心血管疾病等严重慢性疾病。

诺和诺德内容数字化主管Louise Lind Skov

“我们亟需一种能够缩短临床研究报告撰写时间的解决方案,这样我们就可以更快地找到全新疗法,及时挽救患者生命。借助Amazon Bedrock与MongoDB Atlas集成,我们快速构建了解决方案NovoScribe,使我们成为业内首家在几分钟内而不是数周内生成完整临床研究报告的公司。我们正在大规模拓展该应用,而且与过去相比,整个扩展过程节省了大量资源。Amazon Bedrock和MongoDB Atlas集成将彻底改变全球医疗健康行业的游戏规则。”

关于 MongoDB Atlas

MongoDB Atlas是领先的多云开发者数据平台,以高度灵活、高性能和全球分布式运营数据库为核心,加速并简化数据构建过程。MongoDB Atlas在一个统一的环境中提供了一套全面的数据和应用服务,使开发者团队能够快速构建满足现代应用所需的安全性、性能和规模。数以百万计的开发者以及包括思科 (Cisco)、GE医疗 (GE Healthcare)、财捷集团 (Intuit)、丰田金融服务、威瑞森(Verizon)等在内的数以万计的客户每天在整个企业范围内通过MongoDB Atlas以更快、更高效、更具成本效益的方式进行创新。

点击获得更多MongoDB Atlas信息

关于 MongoDB

MongoDB总部位于美国纽约,致力于释放软件与数据潜能,以赋能创新者开创新行业或变革、颠覆现有行业。由开发者构建并服务开发者的MongoDB开发者数据平台,是一个集成了多个相关服务的数据库,可帮助开发团队应对当今市场对各种现代应用不断增长的需求,并提供统一且一致的用户体验。MongoDB在全球100多个国家和地区拥有数万家客户。自2007年以来,MongoDB数据库平台的下载量达数亿次,MongoDB University课程已培养了数百万名开发者。

欲了解更多信息,点击访问MongoDB中文官网


👉点击访问 MongoDB中文官网
👉立即免费试用 MongoDB Atlas
☎️需要支持?欢迎联系我们:400-8662988
✅欢迎关注MongoDB微信订阅号(MongoDB-China),及时获取最新资讯。

这篇关于MongoDB Atlas Vector Search与Amazon Bedrock集成已全面可用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/974908

相关文章

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

【Shiro】Shiro 的学习教程(三)之 SpringBoot 集成 Shiro

目录 1、环境准备2、引入 Shiro3、实现认证、退出3.1、使用死数据实现3.2、引入数据库,添加注册功能后端代码前端代码 3.3、MD5、Salt 的认证流程 4.、实现授权4.1、基于角色授权4.2、基于资源授权 5、引入缓存5.1、EhCache 实现缓存5.2、集成 Redis 实现 Shiro 缓存 1、环境准备 新建一个 SpringBoot 工程,引入依赖:

Sentinel 高可用流量管理框架

Sentinel 是面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性。 Sentinel 具有以下特性: 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应

JAVA用最简单的方法来构建一个高可用的服务端,提升系统可用性

一、什么是提升系统的高可用性 JAVA服务端,顾名思义就是23体验网为用户提供服务的。停工时间,就是不能向用户提供服务的时间。高可用,就是系统具有高度可用性,尽量减少停工时间。如何用最简单的方法来搭建一个高效率可用的服务端JAVA呢? 停工的原因一般有: 服务器故障。例如服务器宕机,服务器网络出现问题,机房或者机架出现问题等;访问量急剧上升,导致服务器压力过大导致访问量急剧上升的原因;时间和

STL经典案例(四)——实验室预约综合管理系统(项目涉及知识点很全面,内容有点多,耐心看完会有收获的!)

项目干货满满,内容有点过多,看起来可能会有点卡。系统提示读完超过俩小时,建议分多篇发布,我觉得分篇就不完整了,失去了这个项目的灵魂 一、需求分析 高校实验室预约管理系统包括三种不同身份:管理员、实验室教师、学生 管理员:给学生和实验室教师创建账号并分发 实验室教师:审核学生的预约申请 学生:申请使用实验室 高校实验室包括:超景深实验室(可容纳10人)、大数据实验室(可容纳20人)、物联网实验

系统架构师-ERP+集成

ERP   集成平台end:就懒得画新的页

Spring Boot集成Tess4J实现OCR

1.什么是Tess4j? Tesseract是一个开源的光学字符识别(OCR)引擎,它可以将图像中的文字转换为计算机可读的文本。支持多种语言和书面语言,并且可以在命令行中执行。它是一个流行的开源OCR工具,可以在许多不同的操作系统上运行。Tess4J是一个基于Tesseract OCR引擎的Java接口,可以用来识别图像中的文本,说白了,就是封装了它的API,让Java可以直接调用。 Tess

如何掌握面向对象编程的四大特性、Lambda 表达式及 I/O 流:全面指南

这里写目录标题 OOP语言的四大特性lambda输入/输出流(I/O流) OOP语言的四大特性 面向对象编程(OOP)是一种编程范式,它通过使用“对象”来组织代码。OOP 的四大特性是封装、继承、多态和抽象。这些特性帮助程序员更好地管理复杂的代码,使程序更易于理解和维护。 类-》实体的抽象类型 实体(属性,行为) -》 ADT(abstract data type) 属性-》成