C++全排列原理算法解析(百度迅雷笔试题)(五)

2024-05-09 18:32

本文主要是介绍C++全排列原理算法解析(百度迅雷笔试题)(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么要接触全排列

全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平。所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总结帮助大家更好的学习和理解。对本文有任何补充之处,欢迎大家指出。

 

全排列原理解析

全排列是将一组数按一定顺序进行排列,如果这组数有n个,那么全排列数为n!个。待会以{1, 2, 3, 4, 5}为例说明如何编写全排列的递归算法。

全排列算法解析

首先来看看题目是如何要求的(百度迅雷校招笔试题)。

用C++写一个函数, 如 Foo(const char *str), 打印出 str 的全排列, 
如 abc 的全排列: abc, acb, bca, dac, cab, cba

为方便起见,用123来示例下。123的全排列有123、132、213、231、312、321这六种。首先考虑213和321这二个数是如何得出的。显然这二个都是123中的1与后面两数交换得到的。然后可以将123的第二个数和每三个数交换得到132。同理可以根据213和321来得231和312。因此可以知道——全排列就是从第一个数字起每个数分别与它后面的数字交换。

 

根据上面的规律和算法分析以后来给出简易代码(貌似不太复杂,却我感觉很绕,建议多DEBUG,因为我也是这样分析的!)

#include <iostream>
using namespace std;
int n = 0;  
void cout1(int list[])
{
for (int c = 0; c<=1; c++)
{
printf("%d ", list[c]);  
}
printf("\n");
}
void swap(int *a, int *b) 
{     
int m;     
m = *a;     
*a = *b;     
*b = m; 
}  
void perm(int list[], int k, int m) 
{     
int i;     
if(k > m)   //k=0 m=1  ---1  :k =1:  k=2: 
{          
for(i = 0; i <= m; i++)              
printf("%d ", list[i]);          
printf("\n");         
n++;     
}     
else     
{         
for(i = k; i <= m; i++)    //k=0,m=1 --1 :k =i =1:
{             
swap(&list[k], &list[i]);  
// cout1(list);
perm(list, k + 1, m);   //m =k =1:
//1
swap(&list[k], &list[i]);         
}     
} 
} 
int main() 
{     
int list[] = {1, 2,3 };     
perm(list, 0, 2);     
printf("total:%d\n", n); 
system("pause");
return 0; 
}  

运行效果如下:

OK !请细细的Debug,是不是有新的发现呢?如果我全改成相同的,又会有什么发现呢?改成222哈!

运行效果如下:

 

先消化那么多吧,下面我将去掉重复的全排列的递归实现使用全排列的非递归实现!

(如果您有更有效率的算法请您与我们共同分享!)

 

 

期待将持续更新!

syw_selfimpr新浪微博地址: http://weibo.com/u/2945271402

 

这篇关于C++全排列原理算法解析(百度迅雷笔试题)(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/974168

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱