三轴加速度计LIS2DUX12开发(3)----计步器

2024-05-09 08:04

本文主要是介绍三轴加速度计LIS2DUX12开发(3)----计步器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三轴加速度计LIS2DUX12开发.3--轮询获取加速度数据

  • 计步器
  • 硬件准备
  • 视频教学
  • 样品申请
  • 源码下载
  • 步数检测说明
  • 通信模式
  • 管脚定义
  • IIC通信模式
  • 速率
  • 生成STM32CUBEMX
  • IIC配置
  • INT配置
  • 串口配置
  • CS和SA0设置
  • 串口重定向
  • 参考程序
  • 初始换管脚
  • 获取ID
  • 复位操作
  • BDU设置
  • 设置传感器的量程
  • 启用步数计和嵌入式功能
  • 配置步数检测中断引脚
  • 中断检测步数
  • 演示

计步器

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

本文将介绍如何驱动和利用LIS2DUX12传感器,实现计步器感应功能。
LIS2DUX12是一款数字式智能3轴线性加速度计,其MEMS和ASIC旨在将尽可能低的电流消耗与丰富的特性(如常开抗混叠滤波、有限状态机 (FSM)、具有自适应自配置 (ASC) 的机器学习内核 (MLC))相结合。
FSM和MLC(带有ASC)为LIS2DUX12提供了始终可用的出色边缘处理能力。LIS2DUX12 MIPI I3C®从接口和嵌入式128级FIFO缓冲区构成了一系列功能,这让该加速度计在物料清单、处理能力和功耗上成为系统集成方面的参考。
LIS2DUX12具有±2g/±4g/±8g/±16g的用户可选满量程,并且可通过1.6 Hz到800 Hz的输出数据速率测量加速度。
LIS2DUX12包含专用内部引擎,用于处理运动和加速度检测,包括自由落体、唤醒、单/双/三击识别、活动/休止,以及6D/4D方向。
LIS2DUX12采用纤薄的小型塑料平面网格阵列封装(LGA),可确保在更大的温度范围(-40°C至+85°C)内正常工作。

在这里插入图片描述

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。
主控为STM32U073CC,加速度计为LIS2DUX12

在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1ci421X7bh/

三轴加速度计LIS2DUX12开发(3)----计步器

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

源码下载

步数检测说明

LIS2DUX12 集成了一个高级步数计算法,该算法在超低功耗域中运行,确保在电池受限的应用中延长电池寿命。步数计以 25 Hz 运行,不受所选设备功率模式(超低功耗、低功耗、高性能)的影响,保证超低功耗体验并与其他设备功能灵活结合。
步数计算法由以下四个阶段组成:

  1. 计算加速度量级信号的峰值:检测信号中的峰值以识别步数,独立于设备的方向。
  2. FIR 滤波器:提取相关频率成分并通过去除高频信号来平滑信号。
  3. 峰值检测器:找到波形的最大值和最小值并计算峰峰值。
  4. 步数计数:如果峰峰值大于设定的阈值,则计为一步。
    在这里插入图片描述

通信模式

对于LIS2DW12,可以使用SPI或者IIC进行通讯。
最小系统图如下所示。

在这里插入图片描述

在CS管脚为1的时候,为IIC模式

在这里插入图片描述
本文使用的板子原理图如下所示。
在这里插入图片描述

管脚定义

在这里插入图片描述

IIC通信模式

在使用IIC通讯模式的时候,SA0是用来控制IIC的地址位的。
对于IIC的地址,可以通过SDO/SA0引脚修改。SDO/SA0引脚可以用来修改设备地址的最低有效位。如果SDO/SA0引脚连接到电源电压,LSb(最低有效位)为’1’(地址0011001b);否则,如果SDO/SA0引脚连接到地线,LSb的值为’0’(地址0011000b)。
在这里插入图片描述

对应的IIC接口如下所示。
主要使用的管脚为CS、SCL、SDA、SA0。
在这里插入图片描述

速率

该模块支持的速度为普通模式(100k)到快速模式+(1M)。

在这里插入图片描述

生成STM32CUBEMX

用STM32CUBEMX生成例程,这里使用MCU为STM32U073CC。
配置时钟树,配置时钟为48M。

在这里插入图片描述

IIC配置

在这里插入图片描述

配置IIC为快速模式,速度为400k。

在这里插入图片描述

INT配置

INT1管脚为PB1。
在这里插入图片描述
配置如下所示。

在这里插入图片描述
开启中断。

在这里插入图片描述

配置LED指示灯。
在这里插入图片描述

在这里插入图片描述
stm32u0xx_it.c添加中断触发后LED翻转电平的代码,添加对应变量。

/* USER CODE BEGIN 0 */
extern uint8_t step_event ;
/* USER CODE END 0 */

添加中断代码。

/*** @brief This function handles EXTI line 0 and line 1 interrupts.*/
void EXTI0_1_IRQHandler(void)
{/* USER CODE BEGIN EXTI0_1_IRQn 0 */HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_1);step_event = 1;/* USER CODE END EXTI0_1_IRQn 0 */HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);/* USER CODE BEGIN EXTI0_1_IRQn 1 *//* USER CODE END EXTI0_1_IRQn 1 */
}

串口配置

查看原理图,PA9和PA10设置为开发板的串口。

在这里插入图片描述

配置串口。

在这里插入图片描述

CS和SA0设置

在这里插入图片描述

串口重定向

打开魔术棒,勾选MicroLIB

在这里插入图片描述

在main.c中,添加头文件,若不添加会出现 identifier “FILE” is undefined报错。

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

函数声明和串口重定向:

/* USER CODE BEGIN PFP */
int fputc(int ch, FILE *f){HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch;
}
/* USER CODE END PFP */

参考程序

https://github.com/STMicroelectronics/lis2dux12-pid

计步器参考
https://github.com/stm32duino/LIS2DUXS12/tree/main/examples

初始换管脚

由于需要向LIS2DUX12_I2C_ADD_L写入以及为IIC模式。
在这里插入图片描述

所以使能CS为高电平,配置为IIC模式。
配置SA0为低电平。

  HAL_GPIO_WritePin(GPIOC, CS_Pin, GPIO_PIN_SET);HAL_GPIO_WritePin(GPIOC, SA0_Pin, GPIO_PIN_SET);

获取ID

我们可以向WHO_AM_I (0Fh)获取固定值,判断是否为0x47。
在这里插入图片描述

lis2dux12_device_id_get为获取函数。
在这里插入图片描述

对应的获取ID驱动程序,如下所示。

	printf("HELLO\n");HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_SET);			HAL_GPIO_WritePin(SA0_GPIO_Port, SA0_Pin, GPIO_PIN_RESET);			lis2dux12_status_t status;uint8_t id;lis2dux12_md_t md;uint16_t steps = 0;lis2dux12_int_config_t int_mode;/* Initialize mems driver interface */dev_ctx.write_reg = platform_write;dev_ctx.read_reg = platform_read;dev_ctx.mdelay = platform_delay;dev_ctx.handle = &SENSOR_BUS;/* Wait sensor boot time */platform_delay(BOOT_TIME);	lis2dux12_exit_deep_power_down(&dev_ctx);// 退出深度休眠模式/* Check device ID */lis2dux12_device_id_get(&dev_ctx, &id);printf("LIS2DUX12_ID=0x%x,id=0x%x\n",LIS2DUX12_ID,id);if (id != LIS2DUX12_ID)while(1);/* Restore default configuration */lis2dux12_init_set(&dev_ctx, LIS2DUX12_RESET);// 重置设备do {lis2dux12_status_get(&dev_ctx, &status);// 获取设备状态} while (status.sw_reset);// 获取设备状态

复位操作

可以向CTRL1 (10h)的SW_RESET寄存器写入1进行复位。
在这里插入图片描述

lis2dux12_init_set为重置函数。
对应的驱动程序,如下所示。

  /* Restore default configuration */lis2dux12_init_set(&dev_ctx, LIS2DUX12_RESET);do {lis2dux12_status_get(&dev_ctx, &status);} while (status.sw_reset);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL4 (13h)的BDU寄存器写入1进行开启。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Set bdu and if_inc recommended for driver usage */lis2dux12_init_set(&dev_ctx, LIS2DUX12_SENSOR_ONLY_ON);

设置传感器的量程

FS[1:0] - 全量程选择:这两个位用于设置传感器的量程。量程决定了传感器可以测量的最大加速度值。例如,量程可以设置为±2g、±4g、±8g或±16g。这允许用户根据应用的特定需求调整传感器的灵敏度。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Set Output Data Rate */md.fs =  LIS2DUX12_4g;md.odr = LIS2DUX12_25Hz_LP;lis2dux12_mode_set(&dev_ctx, &md);	

启用步数计和嵌入式功能

EMB_FUNC_EN 是一个寄存器位,用于启用 LIS2DUX12 传感器的嵌入式功能。这些嵌入式功能可能包括传感器的各种高级特性,如步数计、活动检测、自由落体检测等。这些功能通过内部算法处理传感器数据,而不需要主机处理器进行复杂计算,从而减轻了主机处理器的负担。

在这里插入图片描述

if_add_inc 是一个控制寄存器位,用于启用或禁用自动地址递增功能。在多字节访问模式下,当你读取或写入多个连续的寄存器时,启用地址递增功能可以使得寄存器地址自动增加。这在读取或写入一系列数据时非常有用,因为它可以减少通信开销并简化代码。

在这里插入图片描述

	// Enable Pedometer.	/* 启用传感器的嵌入式功能(例如,步数计),这通常推荐用于驱动程序 */lis2dux12_init_set(&dev_ctx, LIS2DUX12_SENSOR_EMB_FUNC_ON);// 启用嵌入式功能platform_delay(10);

PEDO_EN 是一个用于启用步数检测功能的控制位。启用此功能后,传感器可以进行步数计数。这在运动检测和健康监控应用中非常重要,因为它可以记录用户的步数数据。

在这里插入图片描述

	lis2dux12_stpcnt_mode_t mode;lis2dux12_stpcnt_mode_get(&dev_ctx, &mode);// 获取步数计模式/* Enable pedometer algorithm. */mode.step_counter_enable = PROPERTY_ENABLE;// 启用步数计mode.false_step_rej = PROPERTY_DISABLE;// 禁用误步拒绝功能mode.step_counter_in_fifo = PROPERTY_DISABLE;	// 禁用步数计 FIFO/* Turn on embedded features */lis2dux12_stpcnt_mode_set(&dev_ctx, mode) ;// 设置步数计模式

配置步数检测中断引脚

INT1_STEP_DET 是一个用于步数检测中断的寄存器位。当启用这个中断位时,LIS2DUX12 传感器在检测到步数事件时会触发中断信号,并将该信号输出到指定的中断引脚(如 INT1)。这使得主机微控制器可以通过中断响应步数检测事件,而不需要不断轮询传感器的状态。

在这里插入图片描述

INT1_EMB_FUNC 是一个用于配置 LIS2DUX12 传感器的嵌入式功能中断的寄存器位。当该位启用时,传感器会在嵌入式功能(例如步数检测、活动检测等)触发事件时通过 INT1 引脚发出中断信号。这个功能使得主机微控制器可以通过中断快速响应传感器的嵌入式功能事件,而不需要持续轮询传感器状态。

在这里插入图片描述

	lis2dux12_emb_pin_int_route_t emb_pin_int;lis2dux12_emb_pin_int1_route_get(&dev_ctx, &emb_pin_int);// 设置步数计模式emb_pin_int.step_det = PROPERTY_ENABLE;// 设置步数计模式lis2dux12_emb_pin_int1_route_set(&dev_ctx, &emb_pin_int);// 设置嵌入式中断引脚

中断检测步数

可以通过判断 INT1_STEP_DET 位来确定步数事件是否产生。根据您提供的截图,INT1_STEP_DET 位位于 EMB_FUNC_INT1 寄存器中。当这个位被设置为 1 时,表示步数检测中断被路由到 INT1 引脚。因此,您可以通过读取该寄存器来判断步数事件是否产生。

在这里插入图片描述

EMB_FUNC_REG_ACCESS 是用于访问和配置 LIS2DUX12 传感器的嵌入式功能寄存器的寄存器位。启用 EMB_FUNC_REG_ACCESS 后,可以访问和配置与嵌入式功能相关的寄存器。这对于启用步数检测、活动检测、自由落体检测等功能非常重要。

在这里插入图片描述

获取步数可以通过STEP_COUNTER_L (28h) 和 STEP_COUNTER_H (29h)进行获取。

在这里插入图片描述

获取完毕之后关闭EMB_FUNC_REG_ACCESS 。

  /* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if (step_event) {lis2dux12_emb_pin_int_route_t emb_pin_int1;lis2dux12_emb_pin_int1_route_get(&dev_ctx, &emb_pin_int1);if (emb_pin_int1.step_det) {lis2dux12_stpcnt_steps_get(&dev_ctx, &steps);/* print number of steps  */printf("Steps: %d\r\n", steps);}		step_event = 0;}		HAL_Delay(10);/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */

演示

在这里插入图片描述

这篇关于三轴加速度计LIS2DUX12开发(3)----计步器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972842

相关文章

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C#图表开发之Chart详解

《C#图表开发之Chart详解》C#中的Chart控件用于开发图表功能,具有Series和ChartArea两个重要属性,Series属性是SeriesCollection类型,包含多个Series对... 目录OverviChina编程ewSeries类总结OverviewC#中,开发图表功能的控件是Char

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设