Tensorflow的采样方法:candidate sampling

2024-05-09 07:48

本文主要是介绍Tensorflow的采样方法:candidate sampling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

采样介绍

假如我们有一个多分类任务或者多标签分类任务,给定训练集 (xi,Ti) ,其中 xi 表示上下文, Ti 表示目标类别(可能有多个).可以用word2vec中的negtive sampling方法来举例,使用cbow方法,也就是使用上下文 xi 来预测中心词(单个target Ti ),或者使用skip-gram方法,也就是使用中心词 xi 来预测上下文(多个target( Ti )).

我们想学习到一个通用函数 F(x,y) 来表征上下文 x 和目标类y的关系,如Word2vec里面,使用上下文预测下个单词的概率。

完整的训练方法,如使用softmax或者Logistic回归需要对每个训练数据计算所有类 yL 的概率 F(x,y) ,当 |L| 非常大的时候,训练将非常耗时。

“candidate sampling”训练方法包括为每一个训练数据 (xi,Ti) 构造一个训练任务,使得我们只需要使用一个较小的候选集合 CiL ,就能评估 F(x,y) ,典型的,candidate set Ci 包含目标类别 Ti 和一些随机采样的类别 SiL

Ci=TiSi
, Si 的选择可能依赖 xi Ti ,也可能不依赖。

F(x,y) 可以使用神经网络计算来表征(也就是TensorFlow里面常用的logits)

TensorFlow中各种采样

这里写图片描述
其中:

  • Q(y|x) 表示的是给定context xi 采样到 y 的概率
  • K(x)表示任意不以来候选集的函数
  • logistictrainingloss=i(yPOSilog(1+exp(G(xi,y)))+yNEGilog(1+exp(G(xi,y))))1
  • softmaxtrainingloss=i(log(exp(G(xi,ti))yPOSiNEGiexp(G(xi,y))))

softmax vs. logistic

在使用tensoflow的时候,我们有时候会纠结选择什么样的损失函数比较好,softmax和logistic在表达形式上是有点区别的,但是也不是很大,而且对于普通的softmax_cross_entropy_with_logits和sigmoid_cross_entropy_with_logits也都能够进行多分类任务,那么他们之间的区别是什么的?

就我个人所想到的,使用sigmoid_cross_entropy_with_logits和softmax_cross_entropy_with_logits的最大的区别是类别的排他性,在分类任务中,使用softmax_cross_entropy_with_logits我们一般是选择单个标签的分类,因为其具有排他性,说白了,softmax_cross_entropy_with_logits需要的是一个类别概率分布,其分布应该服从多项分布(也就是多项logistic regression),我们训练是让结果尽量靠近这种概率分布,不是说softmax_cross_entropy_with_logits不能进行多分,事实上,softmax_cross_entropy_with_logits是支持多个类别的,其参数labels也没有限制只使用一个类别,当使用softmax_cross_entropy_with_logits进行多分类时候,以二类为例,我们可以设置真实类别的对应labels上的位置是0.5,0.5,训练使得这个文本尽量倾向这种分布,在test阶段,可以选择两个计算概率最大的类作为类别标签,从这种角度说,使用softmax_cross_entropy_with_logits进行多分,实际上类似于计算文本的主题分布。

但是对于sigmoid_cross_entropy_with_logits,公式 (1) 可以看出,sigmoid_cross_entropy_with_logits其实是训练出了多个分类器,对于有 n 个标签 的分类问题,其实质是分成了n个二分类问题,这点和softmax_cross_entropy_with_logits有着本质的区别。

tensorflow提供了下面两种candidate sample方法

  • tf.nn.nce_loss
  • tf.nn.sampled_softmax_loss

对比与之前讨论的,从最上面的图中的training loss采用的方法可以知道, tf.nn.nce_loss使用的是logistic 而tf.nn.sampled_softmax_loss采用的是softmax loss,其实这两者的区别也主要在这儿,采用logistic loss的本质上还是训练 n 个分类器,而使用softmax loss的其实只是训练了一个主题分类器,tf.nn.nce_loss主要思路也是判断给定context Ci和训练数据 xi ,判断每一个 yi 是不是target label,而 tf.nn.sampled_softmax_loss则是使得在target label上的分布概率最大化。

个人看法,对于多标签多类别的分类任务使用Logistic比较好,对于多标签单类别的分类任务使用softmax比较好,采样中,采用tf.nn.sampled_softmax_loss训练cbow模型比较好,而 tf.nn.nce_loss训练skip-gram比较好。

这篇关于Tensorflow的采样方法:candidate sampling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972811

相关文章

Java中使用Hutool进行AES加密解密的方法举例

《Java中使用Hutool进行AES加密解密的方法举例》AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个,下面:本文主要介绍Java中使用Hutool进行AES加密解密的相关资料... 目录前言一、Hutool简介与引入1.1 Hutool简介1.2 引入Hutool二、AES加密解密基础

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

Spring Security方法级安全控制@PreAuthorize注解的灵活运用小结

《SpringSecurity方法级安全控制@PreAuthorize注解的灵活运用小结》本文将带着大家讲解@PreAuthorize注解的核心原理、SpEL表达式机制,并通过的示例代码演示如... 目录1. 前言2. @PreAuthorize 注解简介3. @PreAuthorize 核心原理解析拦截与

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(