Tensorflow的采样方法:candidate sampling

2024-05-09 07:48

本文主要是介绍Tensorflow的采样方法:candidate sampling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

采样介绍

假如我们有一个多分类任务或者多标签分类任务,给定训练集 (xi,Ti) ,其中 xi 表示上下文, Ti 表示目标类别(可能有多个).可以用word2vec中的negtive sampling方法来举例,使用cbow方法,也就是使用上下文 xi 来预测中心词(单个target Ti ),或者使用skip-gram方法,也就是使用中心词 xi 来预测上下文(多个target( Ti )).

我们想学习到一个通用函数 F(x,y) 来表征上下文 x 和目标类y的关系,如Word2vec里面,使用上下文预测下个单词的概率。

完整的训练方法,如使用softmax或者Logistic回归需要对每个训练数据计算所有类 yL 的概率 F(x,y) ,当 |L| 非常大的时候,训练将非常耗时。

“candidate sampling”训练方法包括为每一个训练数据 (xi,Ti) 构造一个训练任务,使得我们只需要使用一个较小的候选集合 CiL ,就能评估 F(x,y) ,典型的,candidate set Ci 包含目标类别 Ti 和一些随机采样的类别 SiL

Ci=TiSi
, Si 的选择可能依赖 xi Ti ,也可能不依赖。

F(x,y) 可以使用神经网络计算来表征(也就是TensorFlow里面常用的logits)

TensorFlow中各种采样

这里写图片描述
其中:

  • Q(y|x) 表示的是给定context xi 采样到 y 的概率
  • K(x)表示任意不以来候选集的函数
  • logistictrainingloss=i(yPOSilog(1+exp(G(xi,y)))+yNEGilog(1+exp(G(xi,y))))1
  • softmaxtrainingloss=i(log(exp(G(xi,ti))yPOSiNEGiexp(G(xi,y))))

softmax vs. logistic

在使用tensoflow的时候,我们有时候会纠结选择什么样的损失函数比较好,softmax和logistic在表达形式上是有点区别的,但是也不是很大,而且对于普通的softmax_cross_entropy_with_logits和sigmoid_cross_entropy_with_logits也都能够进行多分类任务,那么他们之间的区别是什么的?

就我个人所想到的,使用sigmoid_cross_entropy_with_logits和softmax_cross_entropy_with_logits的最大的区别是类别的排他性,在分类任务中,使用softmax_cross_entropy_with_logits我们一般是选择单个标签的分类,因为其具有排他性,说白了,softmax_cross_entropy_with_logits需要的是一个类别概率分布,其分布应该服从多项分布(也就是多项logistic regression),我们训练是让结果尽量靠近这种概率分布,不是说softmax_cross_entropy_with_logits不能进行多分,事实上,softmax_cross_entropy_with_logits是支持多个类别的,其参数labels也没有限制只使用一个类别,当使用softmax_cross_entropy_with_logits进行多分类时候,以二类为例,我们可以设置真实类别的对应labels上的位置是0.5,0.5,训练使得这个文本尽量倾向这种分布,在test阶段,可以选择两个计算概率最大的类作为类别标签,从这种角度说,使用softmax_cross_entropy_with_logits进行多分,实际上类似于计算文本的主题分布。

但是对于sigmoid_cross_entropy_with_logits,公式 (1) 可以看出,sigmoid_cross_entropy_with_logits其实是训练出了多个分类器,对于有 n 个标签 的分类问题,其实质是分成了n个二分类问题,这点和softmax_cross_entropy_with_logits有着本质的区别。

tensorflow提供了下面两种candidate sample方法

  • tf.nn.nce_loss
  • tf.nn.sampled_softmax_loss

对比与之前讨论的,从最上面的图中的training loss采用的方法可以知道, tf.nn.nce_loss使用的是logistic 而tf.nn.sampled_softmax_loss采用的是softmax loss,其实这两者的区别也主要在这儿,采用logistic loss的本质上还是训练 n 个分类器,而使用softmax loss的其实只是训练了一个主题分类器,tf.nn.nce_loss主要思路也是判断给定context Ci和训练数据 xi ,判断每一个 yi 是不是target label,而 tf.nn.sampled_softmax_loss则是使得在target label上的分布概率最大化。

个人看法,对于多标签多类别的分类任务使用Logistic比较好,对于多标签单类别的分类任务使用softmax比较好,采样中,采用tf.nn.sampled_softmax_loss训练cbow模型比较好,而 tf.nn.nce_loss训练skip-gram比较好。

这篇关于Tensorflow的采样方法:candidate sampling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972811

相关文章

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

Windows设置nginx启动端口的方法

《Windows设置nginx启动端口的方法》在服务器配置与开发过程中,nginx作为一款高效的HTTP和反向代理服务器,被广泛应用,而在Windows系统中,合理设置nginx的启动端口,是确保其正... 目录一、为什么要设置 nginx 启动端口二、设置步骤三、常见问题及解决一、为什么要设置 nginx

树莓派启动python的实现方法

《树莓派启动python的实现方法》本文主要介绍了树莓派启动python的实现方法,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、RASPBerry系统设置二、使用sandroidsh连接上开发板Raspberry Pi三、运

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项