本文主要是介绍基于大数据+Hadoop的豆瓣电子图书推荐系统实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄
🌹简历模板、学习资料、面试题库、技术互助
🌹文末获取联系方式 📝
系列文章目录
基于大数据+Hadoop的豆瓣电子图书推荐系统实现
文章目录
- 系列文章目录
- 1、前言介绍
- 2、功能设计
- 3、功能实现
- 库表设计
- 5、关键代码
- 6、Lunwen参考
- 往期热门专栏回顾
1、前言介绍
随着信息技术的飞速发展,特别是互联网和移动通信技术的普及,数字化阅读逐渐成为人们获取知识和信息的重要方式。在这样的背景下,电子图书以其便捷性和丰富性受到了广泛欢迎。随着电子图书市场的不断扩大,书籍的种类和数量也在急剧增加,这为用户挑选书籍带来了挑战。为了解决信息过载的问题,个性化推荐系统应运而生,并逐渐成为在线阅读平台不可或缺的一部分。基于用户历史行为数据进行推荐的协同过滤算法尤为流行。处理庞大的用户群体和海量的图书数据需要强大的计算能力,传统的单机计算模式已无法满足需求。Hadoop作为一个开源的分布式计算平台,以其高容错性、高扩展性和对大数据处理的优秀能力,成为大数据分析的首选工具。因此,利用Hadoop来构建电子图书推荐系统,不仅可以有效处理和分析大规模数据集,提升推荐质量,还能保证系统的可扩展性和稳定性。
基于Hadoop的豆瓣电子图书推荐系统的研究与实现能够为用户提供更加精准和个性化的阅读推荐,从而优化用户体验,提高用户满意度和平台黏性。通过分析用户的历史阅读行为和偏好,系统可以发现用户的阅读模式,进而推荐更符合个人兴趣的书籍,帮助用户节省筛选时间,增强阅读效率。对于电子图书平台来说,一个高效的推荐系统可以促进更多优质内容的分发,增加用户流量和书籍销量,从而带动平台的经济效益。该系统的建立还有助于推动数据挖掘和机器学习技术在实际应用中的发展,为相关领域提供宝贵的实践经验和研究成果。最后,随着数据处理技术的不断进步,该研究还可以为未来电子图书推荐系统的改进提供理论基础和技术支持,具有长远的研究和应用价值。
2、功能设计
系统的功能设计是整个系统的运行基础,是一个把设计需求替换成以计算机系统的形式表示出来。通过对豆瓣电子图书推荐系统的调查、分析和研究,得出了该系统的总体规划,这是开发设计系统的初步核心。如下图所示:
爬虫数据集展示:
3、功能实现
当人们打开系统的网址后,首先看到的就是首页界面。在这里,人们能够看到系统的导航条,通过导航条导航进入各功能展示页面进行操作。系统首页界面如图5-1所示:
在注册流程中,用户在Vue前端填写必要信息(如用户名、密码等)并提交。前端将这些信息通过HTTP请求发送到Java后端。后端处理这些信息,检查用户名是否唯一,并将新用户数据存入MySQL数据库。完成后,后端向前端发送注册成功的确认,前端随后通知用户完成注册。这个过程实现了新用户的数据收集、验证和存储。注册页面如图5-2所示:
豆瓣高分:在豆瓣高分页面的输入栏中输入书名、作者、出版社和标签进行查询,可以查看到豆瓣高分详细信息,并进行评论或收藏操作;豆瓣高分页面如图5-3所示:
个人中心:在个人中心页面可以对个人中心、修改密码、我的发布、我的收藏等进行详细操作;如图5-4所示:
在登录流程中,用户首先在Vue前端界面输入用户名和密码。这些信息通过HTTP请求发送到Java后端。后端接收请求,通过与MySQL数据库交互验证用户凭证。如果认证成功,后端会返回给前端,允许用户访问系统。这个过程涵盖了从用户输入到系统验证和响应的全过程。如图5-5所示。
用户管理功能在视图层(view层)进行交互,比如点击“查询、添加或删除”按钮或填写用户信息表单。这些用户表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改或删除用户信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便用户功能可以看到最新的信息或相应的操作反馈。如图5-7所示:
豆瓣高分管理功能在视图层(view层)进行交互,比如点击“查询、添加、删除或爬取数据”按钮或填写豆瓣高分信息表单。这些豆瓣高分表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改、查看评论或删除豆瓣高分信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便豆瓣高分功能可以看到最新的信息或相应的操作反馈。如图5-8所示:
管理员进行爬取数据后,点击主页面右上角的看板,可以查看到系统简介、书名、作者统计、价格统计、出版社、评分统计、豆瓣高分总数、豆瓣高分信息等实时的分析图进行可视化管理;如图5-9所示:
库表设计
表4-11:豆瓣高分
5、关键代码
# # -*- coding: utf-8 -*-# 数据爬取文件import scrapy
import pymysql
import pymssql
from ..items import DianzitushuItem
import time
from datetime import datetime,timedelta
import datetime as formattime
import re
import random
import platform
import json
import os
import urllib
from urllib.parse import urlparse
import requests
import emoji
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from selenium.webdriver import ChromeOptions, ActionChains
from scrapy.http import TextResponse
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
# 电子图书
class DianzitushuSpider(scrapy.Spider):name = 'dianzitushuSpider'spiderUrl = 'https://read.douban.com/j/kind/'start_urls = spiderUrl.split(";")protocol = ''hostname = ''realtime = Falsedef __init__(self,realtime=False,*args, **kwargs):super().__init__(*args, **kwargs)self.realtime = realtime=='true'def start_requests(self):plat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '0n4b129m_dianzitushu') == 1:cursor.close()connect.close()self.temp_data()returnpageNum = 1 + 1for url in self.start_urls:if '{}' in url:for page in range(1, pageNum):next_link = url.format(page)yield scrapy.Request(url=next_link,callback=self.parse)else:yield scrapy.Request(url=url,callback=self.parse)# 列表解析def parse(self, response):_url = urlparse(self.spiderUrl)self.protocol = _url.schemeself.hostname = _url.netlocplat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '0n4b129m_dianzitushu') == 1:cursor.close()connect.close()self.temp_data()returndata = json.loads(response.body)try:list = data["list"]except:passfor item in list:fields = DianzitushuItem()try:fields["title"] = emoji.demojize(self.remove_html(str( item["title"] )))except:passtry:fields["picture"] = emoji.demojize(self.remove_html(str( item["cover"] )))except:passtry:fields["salesprice"] = float( item["salesPrice"]/100)except:passtry:fields["wordcount"] = int( item["wordCount"])except:passtry:fields["author"] = emoji.demojize(self.remove_html(str(','.join(str(i['name']) for i in item["author"]) )))except:passtry:fields["biaoqian"] = emoji.demojize(self.remove_html(str( item.get("biaoqian", "小说") )))except:passtry:fields["detailurl"] = emoji.demojize(self.remove_html(str('https://read.douban.com'+ item["url"] )))except:passdetailUrlRule = item["url"]if '["url"]'.startswith('http'):if '{0}' in '["url"]':detailQueryCondition = []detailUrlRule = '["url"]'i = 0while i < len(detailQueryCondition):detailUrlRule = detailUrlRule.replace('{' + str(i) + '}', str(detailQueryCondition[i]))i += 1else:detailUrlRule =item["url"]detailUrlRule ='https://read.douban.com'+ detailUrlRuleif detailUrlRule.startswith('http') or self.hostname in detailUrlRule:passelse:detailUrlRule = self.protocol + '://' + self.hostname + detailUrlRulefields["laiyuan"] = detailUrlRuleyield scrapy.Request(url=detailUrlRule, meta={'fields': fields}, callback=self.detail_parse)# 详情解析def detail_parse(self, response):fields = response.meta['fields']try:if '(.*?)' in '''span[itemprop="genre"]::text''':fields["genre"] = str( re.findall(r'''span[itemprop="genre"]::text''', response.text, re.S)[0].strip())else:if 'genre' != 'xiangqing' and 'genre' != 'detail' and 'genre' != 'pinglun' and 'genre' != 'zuofa':fields["genre"] = str( self.remove_html(response.css('''span[itemprop="genre"]::text''').extract_first()))else:try:fields["genre"] = str( emoji.demojize(response.css('''span[itemprop="genre"]::text''').extract_first()))except:passexcept:passtry:fields["chubanshe"] = str( response.xpath('''//span[text()="出版社"]/../span[@class="labeled-text"]/span[1]/text()''').extract()[0].strip())except:passtry:fields["cbsj"] = str( response.xpath('''//span[text()="出版社"]/../span[@class="labeled-text"]/span[2]/text()''').extract()[0].strip())except:passtry:if '(.*?)' in '''a[itemprop="provider"]::text''':fields["provider"] = str( re.findall(r'''a[itemprop="provider"]::text''', response.text, re.S)[0].strip())else:if 'provider' != 'xiangqing' and 'provider' != 'detail' and 'provider' != 'pinglun' and 'provider' != 'zuofa':fields["provider"] = str( self.remove_html(response.css('''a[itemprop="provider"]::text''').extract_first()))else:try:fields["provider"] = str( emoji.demojize(response.css('''a[itemprop="provider"]::text''').extract_first()))except:passexcept:passtry:if '(.*?)' in '''span.score::text''':fields["score"] = float( re.findall(r'''span.score::text''', response.text, re.S)[0].strip())else:if 'score' != 'xiangqing' and 'score' != 'detail' and 'score' != 'pinglun' and 'score' != 'zuofa':fields["score"] = float( self.remove_html(response.css('''span.score::text''').extract_first()))else:try:fields["score"] = float( emoji.demojize(response.css('''span.score::text''').extract_first()))except:passexcept:passtry:if '(.*?)' in '''span.amount::text''':fields["pingjiashu"] = int( re.findall(r'''span.amount::text''', response.text, re.S)[0].strip().replace('评价',''))else:if 'pingjiashu' != 'xiangqing' and 'pingjiashu' != 'detail' and 'pingjiashu' != 'pinglun' and 'pingjiashu' != 'zuofa':fields["pingjiashu"] = int( self.remove_html(response.css('''span.amount::text''').extract_first()).replace('评价',''))else:try:fields["pingjiashu"] = int( emoji.demojize(response.css('''span.amount::text''').extract_first()).replace('评价',''))except:passexcept:passreturn fields# 数据清洗def pandas_filter(self):engine = create_engine('mysql+pymysql://root:123456@localhost/spider0n4b129m?charset=UTF8MB4')df = pd.read_sql('select * from dianzitushu limit 50', con = engine)# 重复数据过滤df.duplicated()df.drop_duplicates()#空数据过滤df.isnull()df.dropna()# 填充空数据df.fillna(value = '暂无')# 异常值过滤# 滤出 大于800 和 小于 100 的a = np.random.randint(0, 1000, size = 200)cond = (a<=800) & (a>=100)a[cond]# 过滤正态分布的异常值b = np.random.randn(100000)# 3σ过滤异常值,σ即是标准差cond = np.abs(b) > 3 * 1b[cond]# 正态分布数据df2 = pd.DataFrame(data = np.random.randn(10000,3))# 3σ过滤异常值,σ即是标准差cond = (df2 > 3*df2.std()).any(axis = 1)# 不满⾜条件的⾏索引index = df2[cond].index# 根据⾏索引,进⾏数据删除df2.drop(labels=index,axis = 0)# 去除多余html标签def remove_html(self, html):if html == None:return ''pattern = re.compile(r'<[^>]+>', re.S)return pattern.sub('', html).strip()# 数据库连接def db_connect(self):type = self.settings.get('TYPE', 'mysql')host = self.settings.get('HOST', 'localhost')port = int(self.settings.get('PORT', 3306))user = self.settings.get('USER', 'root')password = self.settings.get('PASSWORD', '123456')try:database = self.databaseNameexcept:database = self.settings.get('DATABASE', '')if type == 'mysql':connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')else:connect = pymssql.connect(host=host, user=user, password=password, database=database)return connect# 断表是否存在def table_exists(self, cursor, table_name):cursor.execute("show tables;")tables = [cursor.fetchall()]table_list = re.findall('(\'.*?\')',str(tables))table_list = [re.sub("'",'',each) for each in table_list]if table_name in table_list:return 1else:return 0# 数据缓存源def temp_data(self):connect = self.db_connect()cursor = connect.cursor()sql = '''insert into `dianzitushu`(id,title,picture,salesprice,wordcount,author,biaoqian,detailurl,genre,chubanshe,cbsj,provider,score,pingjiashu)selectid,title,picture,salesprice,wordcount,author,biaoqian,detailurl,genre,chubanshe,cbsj,provider,score,pingjiashufrom `0n4b129m_dianzitushu`where(not exists (selectid,title,picture,salesprice,wordcount,author,biaoqian,detailurl,genre,chubanshe,cbsj,provider,score,pingjiashufrom `dianzitushu` where`dianzitushu`.id=`0n4b129m_dianzitushu`.id))order by rand()limit 50;'''cursor.execute(sql)connect.commit()connect.close()
6、Lunwen参考
往期热门专栏回顾
专栏 | 描述 |
---|---|
Java项目实战 | 介绍Java组件安装、使用;手写框架等 |
Aws服务器实战 | Aws Linux服务器上操作nginx、git、JDK、Vue |
Java微服务实战 | Java 微服务实战,Spring Cloud Netflix套件、Spring Cloud Alibaba套件、Seata、gateway、shadingjdbc等实战操作 |
Java基础篇 | Java基础闲聊,已出HashMap、String、StringBuffer等源码分析,JVM分析,持续更新中 |
Springboot篇 | 从创建Springboot项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回、全局异常处理、Swagger文档 |
Spring MVC篇 | 从创建Spring MVC项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回 |
华为云服务器实战 | 华为云Linux服务器上操作nginx、git、JDK、Vue等,以及使用宝塔运维操作添加Html网页、部署Springboot项目/Vue项目等 |
Java爬虫 | 通过Java+Selenium+GoogleWebDriver 模拟真人网页操作爬取花瓣网图片、bing搜索图片等 |
Vue实战 | 讲解Vue3的安装、环境配置,基本语法、循环语句、生命周期、路由设置、组件、axios交互、Element-ui的使用等 |
Spring | 讲解Spring(Bean)概念、IOC、AOP、集成jdbcTemplate/redis/事务等 |
资料获取,更多粉丝福利,关注下方公众号获取
这篇关于基于大数据+Hadoop的豆瓣电子图书推荐系统实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!