【python数据分析基础】—pandas透视表和交叉表

2024-05-08 12:12

本文主要是介绍【python数据分析基础】—pandas透视表和交叉表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 一、pivot_table 透视表
  • 二、crosstab 交叉表
  • 三、实际应用


前言

透视表是excel和其他数据分析软件中一种常见的数据汇总工具。它是根据一个或多个键对数据进行聚合,并根据行和列上的分组键将数据分配到各个矩形区域中。


一、pivot_table 透视表

pivot_table()默认显示指定索引列和所有数值列。

语法:

pivot_table(data: ‘DataFrame’, values=None, index=None, columns=None, aggfunc: ‘AggFuncType’ = ‘mean’, fill_value=None, margins: ‘bool’ = False, dropna: ‘bool’ = True, margins_name: ‘str’ = ‘All’, observed: ‘bool’ = False, sort: ‘bool’ = True)

参数解析:

  • data:dataframe数据框。
  • value:需要聚合的列的名称,可选。默认聚合所有数值列。
  • index:用于分组的列名或其他分组键,出现在结果透视表的行。
  • columns:用于分组的列名或其他分组键,出现在结果透视表的列。
  • aggfunc:聚合函数或函数列表,默认为"mean",可以是任何对groupby有效的函数。
  • fill_value:用于替换结果表中的缺失值。
  • margins:添加行/列小计和总计,默认为False。
  • dropna:不聚合所有值都为NA的列,默认为True。
  • margins_name:如果margins=True,设置添加行/列小计和总计的名称,默认为"All"。

举例:

以小费数据集为例,数据情况如下:

import pandas as pd
tips=pd.read_csv('F:\\pydata-book-2nd-edition\\examples\\tips.csv')
tips["tip_pct"]=tips["tip"]/tips["total_bill"] #添加一列小费比例tip_pct
tips.head(10)

在这里插入图片描述

tips.shape # (244, 8)
tips.columns

在这里插入图片描述

参数index:根据sex和smoker计算分组平均数。

#pivot_table的默认聚合类型:平均数
tips.pivot_table(index=['sex ','smoker'])

在这里插入图片描述

参数values和columns:只想聚合"tip_pct"和"size",根据"sex","day"分组,将"smoker"放到列上,"day"放到行上。

tips.pivot_table(['tip_pct','size'],index=['sex ','day'],columns='smoker')

在这里插入图片描述

参数margins:margins=True 添加分项小计,这将会添加标签为all的行和列,其值对应单个等级中所有数据的分组统计,all值为平均值。

tips.pivot_table(['tip_pct','size'],index=['sex ','day'],columns='smoker',margins=True)

在这里插入图片描述

参数aggfunc:要使用其他的聚合函数,将其传给aggfunc即可,用len或count可以得到有关分组大小的交叉表。

tips.pivot_table('tip_pct',index=['sex ','smoker'],columns='day',aggfunc=len,margins=True)

在这里插入图片描述

参数fill_value:fill_value可以填补空值(NA)

tips.pivot_table('size',index=['time','sex ','smoker'],columns='day',aggfunc='sum',fill_value=0)

在这里插入图片描述


二、crosstab 交叉表

交叉表作为一种特殊的透视表,用于计算分组频率的特殊透视表。

语法:

crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins: ‘bool’ = False, margins_name: ‘str’ = ‘All’, dropna: ‘bool’ = True, normalize=False)

参数解析:

  • index:接收string、数组、Series或数组list,表示行索引键,无默认。
  • columns:接收string、数组、Series或数组list,表示列索引键,无默认。
  • values:接收array,表示聚合数据,置信为None。
  • rownames:表示行分组键名,无默认。
  • colnames:表示列分组键名,无默认。
  • aggfunc:接收function,表示聚合函数,默认为None。
  • margins:布尔值,默认为True。表示汇总(total)功能的开关,设置为True后,结果集中会出现名为"ALL"的行和列。
  • margins_name:设置总计行(列)的名称(默认名称是“All”)
  • dropna:布尔值,表示是否对值进行标准化,默认为False。
  • normalize:布尔值,表示是否对值进行标准化,默认为False。

举例:

import numpy as np
data = pd.DataFrame({"Sample":np.arange(10),"Gender":np.random.choice(("Female","Male"),10),"Handedness":np.random.choice(("Right-handed","Left-handed"),10)})
data

在这里插入图片描述

根据性别和用手习惯对这段数据进行统计汇总。

import pandas as pd
pd.crosstab(data["Gender"],data["Handedness"],margins=True)

在这里插入图片描述


三、实际应用

示例1:数据聚合与分组实际应用

数据集情况:

import pandas as pd
fec=pd.read_csv('F:\\pydata-book-2nd-edition\\datasets\\fec\\P00000001-ALL.csv')
fec.shape #(1001731, 16)
fec.columns

在这里插入图片描述

fec.iloc[123456]

在这里插入图片描述

  • 分析1: 获取全部的候选人的名单
uniques_cands=fec.cand_nm.unique()
uniques_cands
uniques_cands[2]

在这里插入图片描述

  • 分析2: 补充党派信息

第一步:利用字典说明党派关系。

parties={'Bachmann, Michelle':'Republican','Romney, Mitt':'Republican', 'Obama, Barack':'Democrat',"Roemer, Charles E. 'Buddy' III":'Republican','Pawlenty, Timothy':'Republican','Johnson, Gary Earl':'Republican','Paul, Ron':'Republican', 'Santorum, Rick':'Republican','Cain, Herman':'Republican', 'Gingrich, Newt':'Republican','McCotter, Thaddeus G':'Republican','Huntsman, Jon':'Republican','Perry, Rick':'Republican'}

第二步:通过映射以及series对象的map方法,你可以根据候选人姓名得到一组党派信息,将其添加一个新列。

fec['party']=fec.cand_nm.map(parties)
fec['party'].value_counts()

在这里插入图片描述

数据集中“contb_receipt_amt”既包括退款也包括赞助,因此限定数据集只有正的出资额。

(fec["contb_receipt_amt"]>0).value_counts()

在这里插入图片描述

fec=fec[fec["contb_receipt_amt"]>0]
  • 分析3: 根据职业和雇主统计赞助信息

第一步:根据职业计算出资总额。

fec["contbr_occupation"].value_counts()[:10]

在这里插入图片描述

第二步:对职业信息、雇主信息进行映射。

occ_mapping={'INFORMATION REQUESTED':'NOT PROVIDED','INFORMATION REQUESTED PER BEST EFFORTS':'NOT PROVIDED','INFORMATION REQUESTED(BEST EFFORTS)':'NOT PROVIDED','C.E.O':'CEO'}#如果没有映射消息则返回x
f=lambda x:occ_mapping.get(x,x)
fec["contbr_occupation"]=fec["contbr_occupation"].map(f)
emp_mapping={'INFORMATION REQUESTED':'NOT PROVIDED','INFORMATION REQUESTED PER BEST EFFORTS':'NOT PROVIDED','SELF':'SELF-EMPLOYED','SELF EMPLOYED':'SELF-EMPLOYED'}f=lambda x:emp_mapping.get(x,x)
fec["contbr_employer"]=fec["contbr_employer"].map(f)

第三步:根据党派和职业对数据进行聚合,过滤掉总出资额不足200万美元的数据,生成透视表。

by_occupation = pd.pivot_table(fec,values='contb_receipt_amt',index='contbr_occupation',columns='party',aggfunc="sum")

第四步:生成柱状图

over_2mm = by_occupation[by_occupation.sum(1)>2000000]
over_2mm
over_2mm.plot(kind='barh')

在这里插入图片描述

  • 分析4: 总出资额最高的职业和企业

求最大值方法

def get_top_amounts(group,key,n=5):totals=group.groupby(key)['contb_receipt_amt'].sum()return totals.sort_values(ascending=False)[n:] #根据key对totals进行降序排列

根据职业和雇主进行聚合

fec_mrbo=fec[fec['cand_nm'].isin(['Obama, Barack','Romney, Mitt'])]grouped=fec_mrbo.groupby('cand_nm')grouped.apply(get_top_amounts,'contbr_occupation',n=7)#get_top_amounts函数的参数值

在这里插入图片描述

grouped.apply(get_top_amounts,'contbr_employer',n=10)

在这里插入图片描述

  • 分析5: 对出资额分组

第一步:利用cut函数根据出资额大小将数据离散到多个面元中。

bins=np.array([0,10,100,1000,10000,100000,1000000,10000000,100000000])
labels=pd.cut(fec_mrbo.contb_receipt_amt,bins)
labels

在这里插入图片描述

第二步:根据候选人的姓名以及面元标签对数据进行分组。

grouped=fec_mrbo.groupby(['cand_nm',labels])
grouped.size().unstack(0)

在这里插入图片描述

可以看到obama在小额赞助的数量比romney多得多。

第三步:对出资额求和并在面元内规格化,以便图形化显示两位候选人各种赞助额度的比例:

bucket_sums=grouped.contb_receipt_amt.sum().unstack(0)
bucket_sums

在这里插入图片描述

数据按行求频率如下:

normed_sums=bucket_sums.div(bucket_sums.sum(axis=1),axis=0)
normed_sums

在这里插入图片描述

两位候选人收到的各种捐赠额度的总额比例:

normed_sums[:-2].plot(kind='barh',stacked=True) #排除了两具最大的面元。

在这里插入图片描述

  • 分析6: 根据州统计赞助信息

第一步:根据候选人和州对数据进行聚合。

grouped=fec_mrbo.groupby(['cand_nm','contbr_st'])
totals=grouped.contb_receipt_amt.sum().unstack(0).fillna(0)
totals=totals[totals.sum(1)>100000]
totals[:10]

在这里插入图片描述

第二步:对各行除以总赞助额,就会得到各候选人在各州的总赞助额比例。

percent=totals.div(totals.sum(1),axis=0)
percent[:10]

在这里插入图片描述

这篇关于【python数据分析基础】—pandas透视表和交叉表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970282

相关文章

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Python创建Excel的4种方式小结

《Python创建Excel的4种方式小结》这篇文章主要为大家详细介绍了Python中创建Excel的4种常见方式,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的小伙伴可以学习一下... 目录库的安装代码1——pandas代码2——openpyxl代码3——xlsxwriterwww.cppcns.c

Python中Markdown库的使用示例详解

《Python中Markdown库的使用示例详解》Markdown库是一个用于处理Markdown文本的Python工具,这篇文章主要为大家详细介绍了Markdown库的具体使用,感兴趣的... 目录一、背景二、什么是 Markdown 库三、如何安装这个库四、库函数使用方法1. markdown.mark

一分钟带你上手Python调用DeepSeek的API

《一分钟带你上手Python调用DeepSeek的API》最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把,下面小编就来为大家介绍一下... 目录前言免费体验API-Key申请首次调用API基本概念最小单元推理模型智能体自定义界面总结前言最

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

一文教你使用Python实现本地分页

《一文教你使用Python实现本地分页》这篇文章主要为大家详细介绍了Python如何实现本地分页的算法,主要针对二级数据结构,文中的示例代码简洁易懂,有需要的小伙伴可以了解下... 在项目开发的过程中,遇到分页的第一页就展示大量的数据,导致前端列表加载展示的速度慢,所以需要在本地加入分页处理,把所有数据先放