LeetCode力扣题目111:多种算法对比实现二叉树的最小深度

本文主要是介绍LeetCode力扣题目111:多种算法对比实现二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意:叶子节点是指没有子节点的节点。

示例

示例

输入:

    3/ \9  20/  \15   7

输出:2 (根节点到节点 9 的路径最短)

方法一:递归深度优先搜索(DFS)

解题步骤
  1. 递归终止条件:如果当前节点为空,则返回无穷大(表示没有子节点)。
  2. 递归左右子树:计算左子树和右子树的最小深度。
  3. 计算当前节点的最小深度:当前节点的最小深度为左右子树的最小深度加一。
Python 示例
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):"""计算二叉树的最小深度:param root: TreeNode, 二叉树的根节点:return: int, 最小深度"""if not root:return 0left = minDepth(root.left)right = minDepth(root.right)# 如果左或右子树为空,应返回非空子树的深度if not root.left or not root.right:return max(left, right) + 1return min(left, right) + 1
算法分析
  • 时间复杂度:(O(n)),每个节点访问一次。
  • 空间复杂度:(O(h)),递归栈的深度,其中 (h) 是树的高度。
    方法一的基本思路是使用深度优先搜索(DFS)递归地检查每个节点的左右子树的最小深度。虽然这种方法直观易懂,但存在重复计算和不必要的深度遍历问题,尤其是在遇到高度不平衡的树时。我们可以通过一些改进来优化这种方法。

方法一改进:优化的DFS

改进点
  1. 提前终止:在发现当前节点的一个子树深度已经小于另一个子树时,可以提前终止对该较深子树的深度计算。这样做可以减少不必要的递归调用。
  2. 缓存结果:对于每个节点的左右子树深度,可以使用哈希表或数组缓存其结果,避免重复计算。
Python 示例
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):from functools import lru_cache@lru_cache(None)  # 缓存节点深度计算结果def depth(node):if not node:return float('inf')  # 空节点返回无穷大,表示不可达if not node.left and not node.right:return 1  # 叶子节点深度为1# 使用缓存结果,避免重复计算left_depth = depth(node.left)right_depth = depth(node.right)# 提前终止,如果一个子树深度明显小于另一个,不继续计算较大深度子树return min(left_depth, right_depth) + 1if not root:return 0return depth(root)
算法分析
  • 时间复杂度:通过缓存优化后,每个节点最多被计算一次,因此时间复杂度为 (O(n))。
  • 空间复杂度:因为增加了缓存,所以空间复杂度可能稍高,但在最坏情况下仍然为 (O(h)),其中 (h) 是树的高度,对应于递归栈的最大深度。
优劣势比较
  • 优点
    • 减少了不必要的计算,提高了效率。
    • 通过缓存机制,避免了重复计算相同节点的深度。
  • 缺点
    • 代码复杂度略有增加,需要理解缓存机制。
    • 空间开销可能略大,因为要存储每个节点的计算结果。

通过这种改进,DFS 方法不仅变得更加高效,而且也避免了在不平衡树上的性能陷阱。这使得它更加适用于大规模或深度较大的树结构的场景。

方法二:迭代广度优先搜索(BFS)

解题步骤
  1. 使用队列:利用队列存储每层的节点及其深度。
  2. 层级遍历:遍历每个节点,如果是叶子节点,直接返回其深度。
  3. 更新队列:将节点的子节点入队。
Python 示例
from collections import dequedef minDepth(root):if not root:return 0queue = deque([(root, 1)])  # 存储节点及其深度while queue:node, depth = queue.popleft()if not node.left and not node.right:return depthif node.left:queue.append((node.left, depth + 1))if node.right:queue.append((node.right, depth + 1))
算法分析
  • 时间复杂度:(O(n)),每个节点至多访问一次。
  • 空间复杂度:(O(n)),在最坏的情况下,队列中需要存储所有节点。

方法二使用的是广度优先搜索(BFS)来确定二叉树的最小深度。它通过迭代方式检查每一层的节点,直到找到第一个叶子节点,然后立即返回这个叶子节点的深度。这个方法的主要优点是它不必检查所有的节点,尤其是在一个高度不平衡的树中,它可以更快地找到最浅的叶子节点。尽管如此,我们仍然可以对其进行一些改进,以提高其效率和可用性。

方法二改进:优化的BFS

改进点
  1. 避免使用额外的深度存储:在当前的实现中,每个节点及其对应的深度都存储在队列中。我们可以优化这一点,通过在每一轮循环开始时记录队列的长度,从而避免存储每个节点的深度。
  2. 更早的终止条件:在找到第一个叶子节点后,可以立即退出循环,而不是等待当前层的所有节点都被检查完。
Python 示例
from collections import dequeclass TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):if not root:return 0queue = deque([root])depth = 0  # 初始化深度为0while queue:depth += 1  # 开始新的一层,深度加1for _ in range(len(queue)):  # 遍历当前层的所有节点node = queue.popleft()if not node.left and not node.right:  # 找到第一个叶子节点return depthif node.left:queue.append(node.left)if node.right:queue.append(node.right)return depth  # 在所有节点都有子节点的情况下返回最终深度
算法分析
  • 时间复杂度:在最坏情况下,即遍历到最后一层才找到叶子节点,时间复杂度仍为 (O(n))。
  • 空间复杂度:空间复杂度主要取决于队列中存储的节点数,最坏情况下,队列中可能包含 (n/2) 个节点(最后一层的节点数),因此空间复杂度为 (O(n))。
优劣势比较
  • 优点
    • 立即找到叶子节点后就结束,避免了不必要的计算。
    • 不需要额外存储节点深度,简化了代码。
  • 缺点
    • 在极端情况下(例如,当树高度非常大时),空间复杂度可能仍然较高。

通过这种改进,BFS 方法更加高效和直观,尤其是在处理大型数据集时,这种方法能快速找到最小深度,而无需深入遍历树的所有部分。这使得它在实际应用中更加实用,尤其是在数据结构动态变化较大的环境中。

应用示例

这些方法在需要快速确定数据结构(如游戏、网络路由、社交网络的层级结构)中的最小路径或深度时非常有用。

这篇关于LeetCode力扣题目111:多种算法对比实现二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969808

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time