本文主要是介绍【AI】caffe使用步骤(二):设计网络模型prototxt,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
【一】以 lenet_train_test.prototxt 为例
name: "LeNet"
layer {name: "mnist"type: "Data"top: "data"top: "label"include {phase: TRAIN}transform_param {scale: 0.00390625}data_param {source: "examples/mnist/mnist_train_lmdb"batch_size: 64backend: LMDB}
}
layer {name: "mnist"type: "Data"top: "data"top: "label"include {phase: TEST}transform_param {scale: 0.00390625}data_param {source: "examples/mnist/mnist_test_lmdb"batch_size: 100backend: LMDB}
}
layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"param {lr_mult: 1}param {lr_mult: 2}convolution_param {num_output: 20kernel_size: 5stride: 1weight_filler {type: "xavier"}
这篇关于【AI】caffe使用步骤(二):设计网络模型prototxt的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!