分类器对未见过类别(unseen category)的识别问题

2024-05-08 02:48

本文主要是介绍分类器对未见过类别(unseen category)的识别问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章比较旧了,其实是讨论开集识别问题的(Open-Set Problem),可以参考本人的新文章:真实世界中的开集识别问题(Open-Set Recognition Problem)

未见过类别

    未见过类别(unseen category)或者叫不知道类别(unknown category)。简单来说,如我们定义类别{苹果,香蕉} 且其数据集为D,那么定义一个二分类器C,将D分割为训练集和测试集,那么训练出的分类器只能区分两个类别。假设我们拥有数据Dx,其中拥有的分类为{小狗,小猫},这个时候将Dx混入D的测试集,二分类器C如何分类Dx中的数据?这时我们将Dx包含的数据类别叫未见过类别。也就是分类器从未见过的类别,即该类别未在训练集中定义,区别于未见过的数据。

    更形式化的定义为:对于学习算法F,其只在训练集中训练,且训练集包含的定义类别数为K,测试集定义类别数为N,且测试集中至少有一个类别是训练集中未定义的类别,我们把训练集与测试集定义类别的差集定义为未见过类别。

    一个简单的例子是:我们训练一个mnist分类器,有10个类别分别是{0,1,2,... ,9},如果我们给这个mnist分类器猫的图片,它会分类为什么?这个猫的图片对于mnist分类器就是未见过类别。

 

测试域分类完全性

 

    即:存在学习算法F,使任意的概念C在训练域(空间)中是PAC可学习的,且测试域的任意概念X也属于训练域,那么对于测试域,算法F在其域内是分类完全的。

    对分类器算法而言,测试域分类完全性指分类器的分类数大于或等于测试域中类别数量和测试域中类别包含于分类器类别,且分类器的所有类别概念需要满足训练域中PAC可学习。以下如不特别说明分类器的所有类别概念都满足训练域的PAC可学习。

    如:分类器类别{苹果,香蕉,西瓜},测试域中类别{苹果,香蕉,西瓜},分类完全

          分类器类别{苹果,香蕉,西瓜},测试域中类别{苹果,西瓜},分类完全

          分类器类别{苹果,香蕉,西瓜},测试域中类别{苹果,西瓜,李子},分类不完全

          分类器类别{苹果,香蕉},测试域中类别{苹果,西瓜,李子},分类不完全

    真实应用中的例子:

       实际上,在真实世界中类别数量是非常大的,如在图像分类中,分类可以成千上万,从大分类(水果,蔬菜等)到具体分类(苹果,香蕉),因为从属关系,具体的分类搞定了,大分类就搞定了,所以我们一般直接考虑具体分类问题,如在ImageNet图像识别竞赛中分类数大约为1000,如果我们将测试域设置为仅仅在ImageNet竞赛数据这个域中,训练分类器的类别为1000(类别一一对应)那么分类是完全的,如果将测试域设定为真实世界,那么实际上1000个分类相对于真实世界非常小,也就是分类不完全的。

    在这里我们可以得出一个结论:如果分类器在测试域中不是分类完全的,那么分类器在测试域中未定义的类别,如果被强制分类那么一定会被错分。

    我们知道人对于任意概念如果知道其类别那么将其分类,如果不知道其类别那么分类为"未见过类别"。所以我们引申出一个问题,对于算法F,任意的概念C在训练域中是PAC可学习的,且测试域的某些概念X不属于训练域,也就是训练域中没有关于概念X的数据,在训练域中训练出的算法F如何将概念X分类为"未见过类别"?

分类与域描述

   

    如上图所示,我们可以明显看到分类(判别)算法比数据域描述(data domain description)有更松弛的界(boundary),即分类只需要划类间的界限,只要分类算法达到小的分类误差就可以了,而没有具体的描述类别的边界,所以在未见过类别需要区别的时候,分类算法只能决策到已知类别(在低概率拒绝分类的决策分类算法仍然有较大的问题),所以很容易被愚弄[8],而域描述恰恰因为描述了类别的边界,所以能在界之内的数据点分类为已知类别标记,界之外的数据被分类为未见过类别。(不正式的说,在标记类别趋向于无穷大的时候分类算法的界收敛到域描述的界)。

显式优化类间与类内距离

    对于分类任务即是优化一个函数F(x)使得代价函数最小,如下Cross Entropy 代价函数

   

     这样得到的决策面就如上图1,2。

     为了得到类似于上图域描述的效果,我们可以显式优化内间距离和类内距离,如Contrast Loss[9-11]

    

    或者Triple Loss[12]

   

    这是人脸识别面对开集问题(Open-Set)所提出的算法,在人脸识别领域广泛使用,而人脸识别更类似人类大脑识别,其更像是一个特征搜索问题而非决策问题,所以很多人脸识别算法能够解决未见过类别的问题,不管是1:1的对比还1:N的搜索。

判别模型与生成模型

    判别模型(discriminative model),判别模型是直接学习p(y|x),即输入输出映射,我们通常的分类算法就是判别模型,如SVM,LR,NN...;

    生成模型(generative model)是对p(x,y)进行学习,即学习p(y|x)p(x),最后p(x,y)=p(y|x)p(x),可以认为p(y|x)为判别模型给出的后验概率,而p(x)为先验概率(也可以叫上下文或者熟悉度,比如是否是熟悉的输入,不熟悉[即不属于训练数据分布的数据] 有较小的p(x)值),而p(x,y)可以理解为给定 x y 的综合置信度,所以生成模型更不容易像判别模型那样将未见过类别分类为错误类别[8]。

 

参考:

    1. 周志华,机器学习

    2. Data domain description using support vectors

    3.Support vector domain description

    4.One Class SVM, SVDD(Support Vector Domain Description)

    5.Domain described support vector classifier for multi-classification problems

    6.Combining one-class classifiers

    7. Novelty and Outlier Detection 

    8. Deep Neural Networks are Easily Fooled:High Confidence Predictions for Unrecognizable Images 

    9. Deep learning face representation by joint identification-verification

    10. Deeply learned face representations are sparse, selective, and robust

    11. Deepid3: Face recognition with very deep neural networks

    12. Facenet: A unified embedding for face recognition and clustering

这篇关于分类器对未见过类别(unseen category)的识别问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969094

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g