python sklearn 分类算法简单调用(借鉴)

2024-05-07 17:32

本文主要是介绍python sklearn 分类算法简单调用(借鉴),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 scikit-learn已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:


数据为近红外测试猕猴桃软硬和时间差异的数据,可以作为分类软硬以及前后时间差的分类。

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. # coding=gbk  
  2. ''''' 
  3. Created on 2016年6月4日 
  4.  
  5. @author: bryan 
  6. '''  
  7.    
  8. import time    
  9. from sklearn import metrics    
  10. import pickle as pickle    
  11. import pandas as pd  
  12.   
  13.     
  14. # Multinomial Naive Bayes Classifier    
  15. def naive_bayes_classifier(train_x, train_y):    
  16.     from sklearn.naive_bayes import MultinomialNB    
  17.     model = MultinomialNB(alpha=0.01)    
  18.     model.fit(train_x, train_y)    
  19.     return model    
  20.     
  21.     
  22. # KNN Classifier    
  23. def knn_classifier(train_x, train_y):    
  24.     from sklearn.neighbors import KNeighborsClassifier    
  25.     model = KNeighborsClassifier()    
  26.     model.fit(train_x, train_y)    
  27.     return model    
  28.     
  29.     
  30. # Logistic Regression Classifier    
  31. def logistic_regression_classifier(train_x, train_y):    
  32.     from sklearn.linear_model import LogisticRegression    
  33.     model = LogisticRegression(penalty='l2')    
  34.     model.fit(train_x, train_y)    
  35.     return model    
  36.     
  37.     
  38. # Random Forest Classifier    
  39. def random_forest_classifier(train_x, train_y):    
  40.     from sklearn.ensemble import RandomForestClassifier    
  41.     model = RandomForestClassifier(n_estimators=8)    
  42.     model.fit(train_x, train_y)    
  43.     return model    
  44.     
  45.     
  46. # Decision Tree Classifier    
  47. def decision_tree_classifier(train_x, train_y):    
  48.     from sklearn import tree    
  49.     model = tree.DecisionTreeClassifier()    
  50.     model.fit(train_x, train_y)    
  51.     return model    
  52.     
  53.     
  54. # GBDT(Gradient Boosting Decision Tree) Classifier    
  55. def gradient_boosting_classifier(train_x, train_y):    
  56.     from sklearn.ensemble import GradientBoostingClassifier    
  57.     model = GradientBoostingClassifier(n_estimators=200)    
  58.     model.fit(train_x, train_y)    
  59.     return model    
  60.     
  61.     
  62. # SVM Classifier    
  63. def svm_classifier(train_x, train_y):    
  64.     from sklearn.svm import SVC    
  65.     model = SVC(kernel='rbf', probability=True)    
  66.     model.fit(train_x, train_y)    
  67.     return model    
  68.     
  69. # SVM Classifier using cross validation    
  70. def svm_cross_validation(train_x, train_y):    
  71.     from sklearn.grid_search import GridSearchCV    
  72.     from sklearn.svm import SVC    
  73.     model = SVC(kernel='rbf', probability=True)    
  74.     param_grid = {'C': [1e-31e-21e-11101001000], 'gamma': [0.0010.0001]}    
  75.     grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)    
  76.     grid_search.fit(train_x, train_y)    
  77.     best_parameters = grid_search.best_estimator_.get_params()    
  78.     for para, val in list(best_parameters.items()):    
  79.         print(para, val)    
  80.     model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)    
  81.     model.fit(train_x, train_y)    
  82.     return model    
  83.     
  84. def read_data(data_file):    
  85.     data = pd.read_csv(data_file)  
  86.     train = data[:int(len(data)*0.9)]  
  87.     test = data[int(len(data)*0.9):]  
  88.     train_y = train.label  
  89.     train_x = train.drop('label', axis=1)  
  90.     test_y = test.label  
  91.     test_x = test.drop('label', axis=1)  
  92.     return train_x, train_y, test_x, test_y  
  93.         
  94. if __name__ == '__main__':    
  95.         datafilename = 'softunion20_21.csv'
        
        data_file = "L:\\Python\\output\\"+datafilename    
        thresh = 0.5    
        model_save_file = 1    
        model_save = {}    
         
        test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']    
        classifiers = {'NB':naive_bayes_classifier,     
                      'KNN':knn_classifier,    
                       'LR':logistic_regression_classifier,    
                       'RF':random_forest_classifier,    
                       'DT':decision_tree_classifier,    
                      'SVM':svm_classifier,    
                    'SVMCV':svm_cross_validation,    
                     'GBDT':gradient_boosting_classifier    
        }    
            
        print('reading training and testing data...')    
        train_x, train_y, test_x, test_y = read_data(data_file)    
            
        for classifier in test_classifiers:    
            print('******************* %s ********************' % classifier)    
            start_time = time.time()    
            model = classifiers[classifier](train_x, train_y)    
            print('training took %fs!' % (time.time() - start_time))    
            predict = model.predict(test_x)
            if model_save_file != None:    
                model_save[classifier] = model    
            precision = metrics.precision_score(test_y, predict)    
            recall = metrics.recall_score(test_y, predict)    
            print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))    
            accuracy = metrics.accuracy_score(test_y, predict)    
            print('accuracy: %.2f%%' % (100 * accuracy))




        import numpy as np
        model = classifiers['LR'](train_x, train_y)
        predict = model.predict(test_x)
        print "LR :"
        print "Predict:",test_x,predict.T
  96.      
  97.     
  98.     if model_save_file != None:    
  99.         pickle.dump(model_save, open(model_save_file, 'wb'))    

测试结果如下:

reading training and testing data...
******************* NB ********************
training took 0.004986s!
precision: 78.08%, recall: 71.25%
accuracy: 74.17%
******************* KNN ********************
training took 0.017545s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
******************* LR ********************
training took 0.061161s!
precision: 89.16%, recall: 92.50%
accuracy: 90.07%
******************* RF ********************
training took 0.040111s!
precision: 96.39%, recall: 100.00%
accuracy: 98.01%
******************* DT ********************
training took 0.004513s!
precision: 96.20%, recall: 95.00%
accuracy: 95.36%
******************* SVM ********************
training took 0.242145s!
precision: 97.53%, recall: 98.75%
accuracy: 98.01%
******************* SVMCV ********************
Fitting 3 folds for each of 14 candidates, totalling 42 fits
[Parallel(n_jobs=1)]: Done  42 out of  42 | elapsed:    6.8s finished
probability True
verbose False
coef0 0.0
degree 3
tol 0.001
shrinking True
cache_size 200
gamma 0.001
max_iter -1
C 1000
decision_function_shape None
random_state None
class_weight None
kernel rbf
training took 7.434668s!
precision: 98.75%, recall: 98.75%
accuracy: 98.68%
******************* GBDT ********************
training took 0.521916s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%


附上近红外测试数据集

这篇关于python sklearn 分类算法简单调用(借鉴)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967929

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur