本文主要是介绍python sklearn 分类算法简单调用(借鉴),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
scikit-learn已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:
数据为近红外测试猕猴桃软硬和时间差异的数据,可以作为分类软硬以及前后时间差的分类。
-
- ''
-
-
-
-
-
- import time
- from sklearn import metrics
- import pickle as pickle
- import pandas as pd
-
-
-
- def naive_bayes_classifier(train_x, train_y):
- from sklearn.naive_bayes import MultinomialNB
- model = MultinomialNB(alpha=0.01)
- model.fit(train_x, train_y)
- return model
-
-
-
- def knn_classifier(train_x, train_y):
- from sklearn.neighbors import KNeighborsClassifier
- model = KNeighborsClassifier()
- model.fit(train_x, train_y)
- return model
-
-
-
- def logistic_regression_classifier(train_x, train_y):
- from sklearn.linear_model import LogisticRegression
- model = LogisticRegression(penalty='l2')
- model.fit(train_x, train_y)
- return model
-
-
-
- def random_forest_classifier(train_x, train_y):
- from sklearn.ensemble import RandomForestClassifier
- model = RandomForestClassifier(n_estimators=8)
- model.fit(train_x, train_y)
- return model
-
-
-
- def decision_tree_classifier(train_x, train_y):
- from sklearn import tree
- model = tree.DecisionTreeClassifier()
- model.fit(train_x, train_y)
- return model
-
-
-
- def gradient_boosting_classifier(train_x, train_y):
- from sklearn.ensemble import GradientBoostingClassifier
- model = GradientBoostingClassifier(n_estimators=200)
- model.fit(train_x, train_y)
- return model
-
-
-
- def svm_classifier(train_x, train_y):
- from sklearn.svm import SVC
- model = SVC(kernel='rbf', probability=True)
- model.fit(train_x, train_y)
- return model
-
-
- def svm_cross_validation(train_x, train_y):
- from sklearn.grid_search import GridSearchCV
- from sklearn.svm import SVC
- model = SVC(kernel='rbf', probability=True)
- param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
- grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
- grid_search.fit(train_x, train_y)
- best_parameters = grid_search.best_estimator_.get_params()
- for para, val in list(best_parameters.items()):
- print(para, val)
- model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
- model.fit(train_x, train_y)
- return model
-
- def read_data(data_file):
- data = pd.read_csv(data_file)
- train = data[:int(len(data)*0.9)]
- test = data[int(len(data)*0.9):]
- train_y = train.label
- train_x = train.drop('label', axis=1)
- test_y = test.label
- test_x = test.drop('label', axis=1)
- return train_x, train_y, test_x, test_y
-
- if __name__ == '__main__':
- datafilename = 'softunion20_21.csv'
data_file = "L:\\Python\\output\\"+datafilename
thresh = 0.5
model_save_file = 1
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x, test_y = read_data(data_file)
for classifier in test_classifiers:
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
accuracy = metrics.accuracy_score(test_y, predict)
print('accuracy: %.2f%%' % (100 * accuracy))
import numpy as np
model = classifiers['LR'](train_x, train_y)
predict = model.predict(test_x)
print "LR :"
print "Predict:",test_x,predict.T -
-
- if model_save_file != None:
- pickle.dump(model_save, open(model_save_file, 'wb'))
测试结果如下:
reading training and testing data...
******************* NB ********************
training took 0.004986s!
precision: 78.08%, recall: 71.25%
accuracy: 74.17%
******************* KNN ********************
training took 0.017545s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
******************* LR ********************
training took 0.061161s!
precision: 89.16%, recall: 92.50%
accuracy: 90.07%
******************* RF ********************
training took 0.040111s!
precision: 96.39%, recall: 100.00%
accuracy: 98.01%
******************* DT ********************
training took 0.004513s!
precision: 96.20%, recall: 95.00%
accuracy: 95.36%
******************* SVM ********************
training took 0.242145s!
precision: 97.53%, recall: 98.75%
accuracy: 98.01%
******************* SVMCV ********************
Fitting 3 folds for each of 14 candidates, totalling 42 fits
[Parallel(n_jobs=1)]: Done 42 out of 42 | elapsed: 6.8s finished
probability True
verbose False
coef0 0.0
degree 3
tol 0.001
shrinking True
cache_size 200
gamma 0.001
max_iter -1
C 1000
decision_function_shape None
random_state None
class_weight None
kernel rbf
training took 7.434668s!
precision: 98.75%, recall: 98.75%
accuracy: 98.68%
******************* GBDT ********************
training took 0.521916s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
附上近红外测试数据集
这篇关于python sklearn 分类算法简单调用(借鉴)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!