4.2、从RDBMS向Neo4j导数据【专题四:数据处理】

2024-05-07 15:18

本文主要是介绍4.2、从RDBMS向Neo4j导数据【专题四:数据处理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、目标

  介绍将从PostgreSQL(RDBMS)导出的数据导入Neo4j(GraphDB),即将关系数据库模式建模,使之形成图。
  预备知识:熟悉图模型并安装neo4j服务

2、导RDBMS数据到Neo4j

2.1、RDBMS数据集

  用到的数据集是NorthWind dataset(点击下载),该数据库的E-R图如下:

2.2、构建图模型

  当将E-R模型转换成图模型时,需要遵守如下规则:
  (1)一行仅表示一个节点(node)
  (2)一个表名对应一个Label名
  NorthWind dataset表示成图模型的一个局部示意图如下:
  
  #图模型和E-R模型的区别:
  (1)前者的节点和边没有空值,而后者的字段存在空值;(2)前者描述“关系”(通过边)更加详尽,而且边可以添加元数据;(3)前者对于描述网络关系更加标准化。

2.3、将数据导出成CSV

  通过copy和export将PostgreSQL中的部分表导出:

COPY (SELECT * FROM customers) TO '/tmp/customers.csv' WITH CSV header;COPY (SELECT * FROM suppliers) TO '/tmp/suppliers.csv' WITH CSV header;COPY (SELECT * FROM products)  TO '/tmp/products.csv' WITH CSV header;COPY (SELECT * FROM employees) TO '/tmp/employees.csv' WITH CSV header;COPY (SELECT * FROM categories) TO '/tmp/categories.csv' WITH CSV header;COPY (SELECT * FROM ordersLEFT OUTER JOIN order_details ON order_details.OrderID = orders.OrderID) TO '/tmp/orders.csv' WITH CSV header;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

2.4、基于Cypher导入数据

  通过Cypher的LOAD CSV实现数据导入
  (1)创建节点
  import_csv.cypher如下:

// Create customers
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:customers.csv" AS row
CREATE (:Customer {companyName: row.CompanyName, customerID: row.CustomerID, fax: row.Fax, phone: row.Phone});// Create products
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
CREATE (:Product {productName: row.ProductName, productID: row.ProductID, unitPrice: toFloat(row.UnitPrice)});// Create suppliers
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:suppliers.csv" AS row
CREATE (:Supplier {companyName: row.CompanyName, supplierID: row.SupplierID});// Create employees
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:employees.csv" AS row
CREATE (:Employee {employeeID:row.EmployeeID,  firstName: row.FirstName, lastName: row.LastName, title: row.Title});// Create categories
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:categories.csv" AS row
CREATE (:Category {categoryID: row.CategoryID, categoryName: row.CategoryName, description: row.Description});USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MERGE (order:Order {orderID: row.OrderID}) ON CREATE SET order.shipName =  row.ShipName;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

  (2)创建索引
  对刚创建的节点建立索引,以便在下一步创建边关系的时候能快速检索到各点。

CREATE INDEX ON :Product(productID);CREATE INDEX ON :Product(productName);CREATE INDEX ON :Category(categoryID);CREATE INDEX ON :Employee(employeeID);CREATE INDEX ON :Supplier(supplierID);CREATE INDEX ON :Customer(customerID);CREATE INDEX ON :Customer(customerName);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

  (3)创建边关系
  首先创建products和employees的边关系。

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (product:Product {productID: row.ProductID})
MERGE (order)-[pu:PRODUCT]->(product)
ON CREATE SET pu.unitPrice = toFloat(row.UnitPrice), pu.quantity = toFloat(row.Quantity);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (employee:Employee {employeeID: row.EmployeeID})
MERGE (employee)-[:SOLD]->(order);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (customer:Customer {customerID: row.CustomerID})
MERGE (customer)-[:PURCHASED]->(order);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

  其次,创建products, suppliers, and categories的边关系.

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
MATCH (product:Product {productID: row.ProductID})
MATCH (supplier:Supplier {supplierID: row.SupplierID})
MERGE (supplier)-[:SUPPLIES]->(product);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
MATCH (product:Product {productID: row.ProductID})
MATCH (category:Category {categoryID: row.CategoryID})
MERGE (product)-[:PART_OF]->(category);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

  然后,创建employees之间的“REPORTS_TO”关系。

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:employees.csv" AS row
MATCH (employee:Employee {employeeID: row.EmployeeID})
MATCH (manager:Employee {employeeID: row.ReportsTo})
MERGE (employee)-[:REPORTS_TO]->(manager);
  • 1
  • 2
  • 3
  • 4
  • 5

  最后,为优化查询速度,在orders上创建唯一性约束:

CREATE CONSTRAINT ON (o:Order) ASSERT o.orderID IS UNIQUE;
  • 1

  此外,也可以通过运行整个脚本一次性完成所上述工作:

bin/neo4j-shell -path northwind.db -file import_csv.cypher.
  • 1

  (4)最终成果
  
  附:(1)Northwind SQL, CSV and Cypher data files (zip)
  (2)Tool:SQL to Neo4j Import

这篇关于4.2、从RDBMS向Neo4j导数据【专题四:数据处理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967719

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据