基于上下文的推荐 -- 包括时间衰减算法和位置推荐算法(代码实现)

2024-05-07 13:38

本文主要是介绍基于上下文的推荐 -- 包括时间衰减算法和位置推荐算法(代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于上下文的推荐

    基于时间特征的推荐
        时间衰减
            基于时间衰减的ItemCF算法
                算法核心两部分,都加入了时间衰减项
                    以movielens数据集实现ItemCF
            基于时间衰减的UserCF算法
                    以movielens数据集实现UserCF
    基于地点和热度推荐
            原理(包含三种数据集)
            以home-less数据集为例实现代码

基于时间特征的推荐

时间信息对用户兴趣的影响:

    物品具有生命周期(例如春节档电影)
    用户兴趣随时间变化
    季节效应(冬奶茶夏圣代,吸溜)
    所以在给定时间信息后,对于推荐系统变成了一个时变的系统。

对于Delicious数据集(包括4部分–用户ID,日期,网页URL和标签)我们用不同的指标可以度量网站中物品的生命周期:

    物品评价在线天数
    相隔T天系统物品流行度向量的平均相似度(判断用户兴趣的转变)
    在这里插入图片描述
    可以看到成指数级下降,即我们推荐时要降低几天前的权重。
    实现实时性要求推荐算法:
    要求每个用户访问时,要根据用户当前时间点前的行为实时计算推荐列表。
    推荐算法要平衡考虑用户近期和长期行为(用户有长期的兴趣爱好)

对于现实中的推荐系统表现可以看出:对于推荐的书籍会在你搜索某本书籍时发生一两本的变化,但是整体还是稳定的,维持着用户长期兴趣的推荐。

通过对用户调查的实验观察得出:
在这里插入图片描述
对于没有用户行为时,实现时间多样性的方法:

    在生成结果时加入随机性
    记录用户每天看到的推荐结果,再次推荐时针对前几天看到很多次的推荐结果降权
    (若降权后,推荐的仍在列表前面则继续推荐)

时间衰减

在这里插入图片描述
基于时间衰减的ItemCF算法
算法核心两部分,都加入了时间衰减项

时间衰减函数:在这里插入图片描述
在这里插入图片描述
以movielens数据集实现ItemCF

import json
import pandas as pd
import math
import os
from operator import itemgetter
from sklearn.model_selection import train_test_split


class NewItemCF:
    def __init__(self,datafile,simfile):
        self.alpha = 0.5
        self.beta = 0.8
        #文件目录
        self.datafile = datafile
        #存放相似度矩阵的文件目录
        self.simfile=simfile
        #最大的时间
        self.max_time=self.get_maxtime()
        #获得训练集与测试集
        self.train, self.test = self.loadData()
        if os.path.exists(simfile):
            self.items_sim=json.load(open('data/items_sim.json', 'r'))
        else:
            self.items_sim = self.ItemSimilarityBest()
    def loadData(self):
        data = list()
        with open(self.datafile, 'r') as f:
            lines = f.readlines()
        for line in lines:

            userid, itemid, record, timestamp = line.split("::")
            data.append((userid, itemid, int(record), int(timestamp)))


        train_list, test_list = train_test_split(data, test_size=0.3,random_state=1)

        train_dict = self.transform(train_list)
        test_dict = self.transform(test_list)

        return train_dict, test_dict
    def get_maxtime(self):
        title = ['user', 'movie', 'rating', 'time']
        data = pd.read_csv(self.datafile, sep='::', names=title,engine = 'python')
        return data['time'].max()
    def transform(self,data):
        data_dict=dict()
        for userid,itemid,record,timestamp in data:
            data_dict.setdefault(userid,{})
            data_dict[userid].setdefault(itemid,{})
            data_dict[userid][itemid]['rate']=record
            data_dict[userid][itemid]['time']=timestamp
        return data_dict

    def ItemSimilarityBest(self):
        items_sim=dict()
        #统计每个物品的关联用户数
        item_user_count=dict()
        #两两物品相似度计算的分子部分
        C=dict()

        for user,items in self.train.items():
            for i in items.keys():
                item_user_count.setdefault(i,0)
                if self.train[user][i]['rate']>0:
                    item_user_count[i]+=1
                if i not in C.keys():
                    C[i]=dict()
                for j in items.keys():
                    if i==j:
                        continue
                    if j not in C[i].keys():
                        C[i][j]=0
                    if self.train[user][i]['rate']>0 and self.train[user][j]['rate']>0:
                        C[i][j]+=1/(1+self.alpha*abs(self.train[user][i]['time']-self.train[user][j]['time'])/(24*60*60))

        for i,related_items in C.items():
            items_sim.setdefault(i,dict())
            for j,cij in related_items.items():
                items_sim[i][j]=cij/math.sqrt(item_user_count[i]*item_user_count[j])

        json.dump(items_sim, open(self.simfile, 'w'))
        return items_sim

    def recommand(self,user,K=20,N=10):
        items_sim=self.items_sim
        rank=dict()

        ru=self.train.get(user,{})
        for i,rui in ru.items():
            for j,wij in sorted(items_sim[i].items(),key=itemgetter(1),reverse=True)[:K]:
                if j in ru.keys():
                    continue
                if j not in rank.keys():
                    rank[j]=0.0

                rank[j]+=rui['rate']*wij*(1/(1+self.beta*(self.max_time-rui['time'])/(24*60*60)))
        return sorted(rank.items(),key=itemgetter(1),reverse=True)[:N]

    def precision(self, K=20, N=10):
        hit = 0
        num=0
        for user in self.train.keys():
            tu = self.test.get(user, {})
            rank = self.recommand(user, K=K, N=N)
            for item, rate in rank:
                if item in tu:
                    hit += 1
            num += N
        precision=hit/num
        return precision

if __name__ == '__main__':
    b=NewItemCF('ml-1m/ratings.dat','data/items_sim.json')
    print(b.precision())

基于时间衰减的UserCF算法

原理同上面的ItemCF算法,这里不再解释。
以movielens数据集实现UserCF

import json
import math
import pandas as pd
import os
from operator import itemgetter
from sklearn.model_selection import train_test_split


class NewUserCF:
    def __init__(self,datafile,simfile):
        self.alpha=0.5
        self.beta=0.8
        #文件目录
        self.datafile=datafile
        #存放相似度矩阵的文件
        self.simfile=simfile
        #获取最大的时间
        self.max_time=self.get_maxtime()
        #获取数据
        self.train,self.test=self.loadData()
        #用户之间相似度
        if os.path.exists('data/users_sim.json'):
            self.users_sim=json.load(open('data/users_sim.json','r'))
        else:
            self.users_sim=self.UsersSimilarity()
    def get_maxtime(self):
        title = ['user', 'movie', 'rating', 'time']
        data = pd.read_csv(self.datafile, sep='::', names=title, engine='python')
        return data['time'].max()

    def loadData(self):
        data=list()
        with open(self.datafile,'r') as f:
            lines=f.readlines()
        for line in lines:
            userid,itemid,record,timestamp=line.split("::")
            data.append([userid,itemid,int(record),int(timestamp)])
        train_data,test_data=train_test_split(data,test_size=0.3,random_state=1)
        train_data=self.transform(train_data)
        test_data=self.transform(test_data)
        return train_data,test_data

    def transform(self,data):
        data_dict=dict()
        for userid,itemid,record,timestamp in data:
            if userid not in data_dict.keys():
                data_dict[userid]={}
            if itemid not in data_dict[userid].keys():
                data_dict[userid][itemid]={}
            data_dict[userid][itemid]['rate']=record
            data_dict[userid][itemid]['time']=timestamp
        return data_dict

    def UsersSimilarity(self):


        #物品-用户倒查表
        item_users=dict()
        for u,items in self.train.items():
            for i in items.keys():
                item_users.setdefault(i,set())
                if self.train[u][i]['rate']>0:
                    item_users[i].add(u)
        #计算两两用户相似的分子部分
        C=dict()
        #统计每个用户评价过多少个电影
        N=dict()
        for user,item_dict in self.train.items():
            if user not in N.keys():
                N[user]=0

            items=[item for item in item_dict.keys() if item_dict[item]['rate']>0]
            N[user]=len(items)
        for item,users in item_users.items():
            for u in users:
                C.setdefault(u,dict())
                for v in users:
                    C[u].setdefault(v,0.0)
                    if v==u:
                        continue
                    C[u][v]+=(1/(1+self.alpha*abs(self.train[u][item]['time']-self.train[v][item]['time'])/(24*60*60)))*(1/math.log(1+len(users)))

        users_sim=dict()
        for u,related_users in C.items():
            users_sim.setdefault(u,dict())
            for v,wuv in related_users.items():
                if u==v:
                    continue
                users_sim[u][v]=wuv/math.sqrt(N[u]*N[v])
        json.dump(users_sim,open('data/users_sim.json','w'))
        return users_sim


    def recommand(self,user,K=20,N=10):
        """

        :param user: 用户id
        :param K: 取和user相似的前K的其他用户
        :param N: 推荐N个物品
        :return: 推荐列表及用户对其的兴趣的字典
        """
        rank=dict()
        related_items=self.train.get(user,{})
        for v,wuv in sorted(self.users_sim[user].items(),key=itemgetter(1),reverse=True)[:K]:
            for i,rvi in self.train[v].items():
                if i in related_items.keys():
                    continue
                if i not in rank.keys():
                    rank[i]=0.0
                else:
                    rank[i]+=wuv*rvi['rate']*(1/(1+self.beta*(self.max_time-rvi['time'])))
        return sorted(rank.items(),key=itemgetter(1),reverse=True)[:N]
    def precision(self,K=20,N=10):
        hit=0
        num=0

        for user in self.train.keys():
            tu=self.test.get(user,{})
            rank=self.recommand(user,K=K,N=N)
            for item,rate in rank:
                if item in tu:
                    hit+=1
            num+=N
        precision=hit/num
        return precision

if __name__ == '__main__':
    a=NewUserCF('ml-1m/ratings.dat','data/users_sim.json')
    print(a.precision())


   

基于地点和热度推荐
原理(包含三种数据集)

在这里插入图片描述
以home-less数据集为例实现代码

# 这里用了老师给的代码
# 这个数据集与上面三种数据集采用的思想不一样
import pandas as pd

class RecBasedAh:
    def __init__(self,path=None,Addr='朝阳区',type='score',k=10):
        self.path=path
        self.Addr=Addr
        self.type=type
        self.k=k

        self.data=self.load_mess()
    def load_mess(self):
      # 这个函数筛选出用户位置周围的数据
        data=pd.read_csv(self.path,header=0,sep=',',encoding='GBK')
        return data[data['addr']==self.Addr]

    def recommand(self):
      # 判断推荐所依据的原因
      # else 中是综合原因 对于评分 评论条数 开业时间 装修时间分别做了加权
      # 可以自己设计自己的要求 比如对于开业时间等不做考虑
        if self.type in ['score','comment_num','lowest_price','decoration_time','open_time']:
            data=self.data.sort_values(by=[self.type,'lowest_price'],ascending=False)[:self.k]
            return dict(data.filter(items=['name',self.type]).values)
        elif self.type=='combine':
            data=self.data.filter(items=['name','score','comment_num','lowest_price','decoration_time','open_time'])
            #装修时间越近越好
            data['decoration_time']=data['decoration_time'].apply(lambda x:int(x)-2017)
            #开业时间越早越好
            data['open_time']=data['open_time'].apply(lambda x:2017-int(x))

            for col in data.keys():
                if col!='name':
                    data[col]=(data[col]-data[col].min())/(data[col].max())


            data[self.type]=1*data['score']+2*data['comment_num']+1.5*data['lowest_price']+0.5*data['decoration_time']+0.5*data['open_time']
            data=data.sort_values(by=self.type,ascending=False)[:self.k]
            return dict(data.filter(items=['name',self.type]).values)


if __name__ == '__main__':
    path='hotel-mess/hotel-mess.csv'

    hotel_rec=RecBasedAh(path,Addr='朝阳区',type='combine',k=10,sort=False)
    print(hotel_rec.recommand())

这篇关于基于上下文的推荐 -- 包括时间衰减算法和位置推荐算法(代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967506

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭