【七十九】【算法分析与设计】并查集模板!!!并查集的实现_牛客题霸_牛客网,【模板】并查集 - 洛谷,并查集代码!!!

本文主要是介绍【七十九】【算法分析与设计】并查集模板!!!并查集的实现_牛客题霸_牛客网,【模板】并查集 - 洛谷,并查集代码!!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

并查集的实现_牛客题霸_牛客网

描述

给定一个没有重复值的整形数组arr,初始时认为arr中每一个数各自都是一个单独的集合。请设计一种叫UnionFind的结构,并提供以下两个操作。

boolean isSameSet(int a, int b): 查询a和b这两个数是否属于一个集合

void union(int a, int b): 把a所在的集合与b所在的集合合并在一起,原本两个集合各自的元素以后都算作同一个集合

[要求]

如果调用isSameSet和union的总次数逼近或超过O(N),请做到单次调用isSameSet或union方法的平均时间复杂度为O(1)

输入描述:

第一行两个整数N, M。分别表示数组大小、操作次数 接下来M行,每行有一个整数opt 若opt = 1,后面有两个数x, y,表示查询(x, y)这两个数是否属于同一个集合 若opt = 2,后面有两个数x, y,表示把x, y所在的集合合并在一起

输出描述:

对于每个opt = 1的操作,若为真则输出"Yes",否则输出"No"

示例1

输入:

4 5 1 1 2 2 2 3 2 1 3 1 1 1 1 2 3

复制

输出:

No Yes Yes

复制

说明:

每次2操作后的集合为 ({1}, {2}, {3}, {4}) ({1}, {2, 3}, {4}) ({1, 2, 3}, {4})

备注:

1 \leqslant N, M \leqslant 10^61⩽N,M⩽106

保证1 \leqslant x, y \leqslant N保证1⩽x,yN

1.

递归转化为迭代,_find的递归写法转化为迭代的写法.

递归的出口是father[i]==i,所以while循环的入口在递归的出口条件前面加上一个!取反.

递归的进入下一层本来是_find(father[i]).转化为迭代就是i=father[i].

中间清理栈的迭代过程也可以想象成是递归的过程.

 
#include<bits/stdc++.h> // 引入常用的头文件
#define int long long // 定义int为长整型,以支持大数据量的处理
#define endl '\n' // 定义换行符为'\n',增加输出速度
#define p pair< long long, long long> // 定义pair类型的别名p,用于存储两个长整型的数值using namespace std; // 使用标准命名空间const int dx[] = { 1, -1, 0, 0 }; // 定义数组dx,用于某些方向操作,此处可能未使用
const int dy[] = { 0, 0, 1, -1 }; // 定义数组dy,用于某些方向操作,此处可能未使用// 全局变量定义区域
int n, m; // n表示数组大小,m表示操作次数
int op, nums1, nums2; // op操作类型,nums1和nums2操作数vector<int> father; // 并查集数组,存储每个元素的父节点
vector<int> _stack; // 辅助栈,用于路径压缩int _find(int i) { // 并查集查找操作,带路径压缩while (!(father[i] == i)) { // 如果i不是自己的父节点,进行路径压缩i = father[i];_stack.push_back(i); // 将当前节点添加到栈中}while (_stack.size()) { // 当栈不为空时,进行路径压缩father[_stack.back()] = i; // 将栈中的每个元素的父节点设置为根节点i_stack.pop_back(); // 弹出栈顶元素}return i; // 返回根节点
}int isSameSet(int x, int y) { // 检查两个元素是否属于同一个集合return _find(x) == _find(y); // 通过查找根节点来判断
}void _union(int x, int y) { // 并查集合并操作if (_find(x) == _find(y)) { // 如果x和y已经属于同一个集合,则不操作return;} else {father[_find(x)] = _find(y); // 将x的根节点的父节点设置为y的根节点,完成合并}
}void init() { // 读取操作和操作数cin >> op >> nums1 >> nums2;
}void solveinit() { // 初始化解决方案,此处未使用
}void solve() { // 根据操作类型执行相应的并查集操作solveinit();if (op == 1) { // 如果是查询操作if (isSameSet(nums1, nums2))cout << "Yes" << endl; // 如果属于同一个集合,输出"Yes"else cout << "No" << endl; // 否则输出"No"} else { // 如果是合并操作_union(nums1, nums2); // 合并nums1和nums2所在的集合}
}signed main() { // 主函数ios::sync_with_stdio(false); // 禁用C和C++的同步,加速cin和coutcin.tie(nullptr); // 解除cin和cout的绑定cout.tie(nullptr);cout << fixed << setprecision(15); // 设置浮点数输出的精度cin >> n >> m; // 读入数组大小和操作次数father.assign(n + 1, 0); // 初始化father数组,大小为n+1for (int i = 0; i <= n; i++) { // 将每个元素的父节点初始化为自己father[i] = i;}while (m--) { // 读取m个操作并执行init();solve();}
}

【模板】并查集 - 洛谷

【模板】并查集

题目描述

如题,现在有一个并查集,你需要完成合并和查询操作。

输入格式

第一行包含两个整数 $$N,$$ ,表示共有 $$$$ 个元素和 $$$$ 个操作。

接下来 $$$$ 行,每行包含三个整数 $$Z_i,X_i,Y_$$ 。

当 $$Z_i=$$ 时,将 $$X_$$ 与 $$Y_$$ 所在的集合合并。

当 $$Z_i=$$ 时,输出 $$X_$$ 与 $$Y_$$ 是否在同一集合内,是的输出

Y ;否则输出 N

输出格式

对于每一个 $$Z_i=$$ 的操作,都有一行输出,每行包含一个大写字母,为 Y 或者 N

样例 #1

样例输入 #1

4 7 2 1 2 1 1 2 2 1 2 1 3 4 2 1 4 1 2 3 2 1 4

样例输出 #1

N Y N Y

提示

对于 $$30\$$ 的数据,$N \le 10$,$M \le 20$。

对于 $$70\$$ 的数据,$N \le 100$,$M \le 10^3$。

对于 $$100\$$ 的数据,$1\le N \le 10^4$,$1\le M \le 2\times 10^5$,$1 \le X_i, Y_i \le N$,$Z_i \in \{ 1, 2 \}$。

 
#include<bits/stdc++.h> // 引入常用的头文件
#define int long long // 定义int为长整型,适用于处理大数据
#define endl '\n' // 定义结束符为'\n',优化输出效率
#define p pair<long long, long long> // 定义pair的别名p,用于存储长整型的键值对using namespace std;const int dx[] = {1, -1, 0, 0}; // 方向数组,可能用于处理四方向问题,本代码未用到
const int dy[] = {0, 0, 1, -1}; // 方向数组,可能用于处理四方向问题,本代码未用到
//----------------------------------------------------int n, m; // n是元素数量,m是操作次数
int op, nums1, nums2; // op是操作类型,nums1和nums2是操作的元素vector<int> father; // 并查集的父节点数组
vector<int> _st; // 辅助栈,用于路径压缩int _find(int i) { // 查找根节点,并应用路径压缩while (!(father[i] == i)) { // 如果节点i不是自己的父节点,继续向上查找_st.push_back(i); // 将当前节点加入栈中i = father[i]; // 移动到父节点}while (_st.size()) { // 路径压缩,将路径上的所有节点直接连接到根节点father[_st.back()] = i;_st.pop_back();}return i; // 返回根节点
}bool isSameSet(int x, int y) { // 判断两个元素是否在同一集合中return _find(x) == _find(y);
}void _union(int x, int y) { // 合并两个集合if (_find(x) == _find(y)) { // 如果已经在同一集合中,则无需合并return;} else {father[_find(x)] = _find(y); // 否则,将一个集合的根节点指向另一个集合的根节点}
}// 初始化函数,读取输入并初始化并查集
void init() {cin >> n >> m;father.assign(n + 1, 0); // 分配并初始化并查集数组for (int i = 0; i <= n; i++) {father[i] = i; // 初始化时,每个元素的父节点是自己}
}// 根据操作类型执行相应的并查集操作
void solve() {if (op == 1) { // 如果是合并操作_union(nums1, nums2);} else { // 如果是查询操作if (isSameSet(nums1, nums2)) cout << "Y" << endl; // 如果在同一集合,输出Yelse cout << "N" << endl; // 否则输出N}
}signed main() {ios::sync_with_stdio(false); // 提高cin和cout的效率cin.tie(nullptr); // 解绑cin和coutcout.tie(nullptr);cout << fixed << setprecision(15); // 设置浮点数精度//----------------------------------------------init(); // 初始化while (m--) { // 处理每个操作cin >> op >> nums1 >> nums2;solve();}
}

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【七十九】【算法分析与设计】并查集模板!!!并查集的实现_牛客题霸_牛客网,【模板】并查集 - 洛谷,并查集代码!!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967220

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象