借助ArangoDB,带你玩转Google图算法引擎Pregel

2024-05-07 09:08

本文主要是介绍借助ArangoDB,带你玩转Google图算法引擎Pregel,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

借助ArangoDB,带你玩转Google图算法引擎Pregel

 
 

ArangoDB团队研究出一种算法,能够在一个图中识别出已连接的子图,文中以国家为例;在ArangoDB中引入Pregel框架,通过Worker算法、合成算法、pregelRunner模块来执行不同的实现方式。来试试吧!

ArangoDB团队研究出一种算法,能够在一个图中识别出已连接的子图,文中以国家为例;在ArangoDB中引入Pregel框架,通过Worker算法、合成算法、pregelRunner模块来执行不同的实现方式。开发者也可以自行编写算法,编程世界魅力无穷!

译文如下:

Pregel作为Google推出的一种面向图算法的分布式编程框架,主要用于处理大规模的图算法计算。比如,图遍历(BFS)、最短路径(SSSP)、PageRank计算等。

检测“已连接节点”的算法

为了解决已连接节点的问题,ArangoDB团队研究出一种算法,能够在一个图中识别出已连接的子图。这里以国家为例子,下图包含10个国家,互相之间的关系定义为边界接壤(hasBorderWith),其形成的4种已连接节点组分别为:

  1. 德国,奥地利,瑞士
  2. 摩洛哥,阿尔及利亚,突尼斯
  3. 巴西,阿根廷,乌拉圭
  4. 澳大利亚

要导入该图,请点击这里进行下载,然后打开ArangoShell并执行如下语句:

Worker算法

Worker算法执行于图中每个顶点之上,每个顶点有一个相关的消息游标和一个global对象,里面含有步长信息和用户定义的Global数据。该算法定义如下:

为了检测所有的节点组,这里使用了一种非常直接的方法:

每个节点组有一个字母标识符,存有其顶点最后的_key属性信息。所以,第0步的时候,每个顶点存储的是其自身的key信息以及初始邻近接壤节点信息。要访问源顶点需要使用_get(“someAttribute”)方法:

一个顶点只能访问其外部边界,因此在第1步的时候要记得把它所有接收到的消息放入数组中,以便进行向后通信,同时要根据传入的消息来更新节点组。

所以前两步的操作开启了向前和向后通信,接着执行算法直到每个顶贴都接收到其顶点组标识信息。因此,当接收到邻近标识符信息后,每个顶点需要更新顶点组标识信息:

当一个顶点不再接收到新的消息或新的组标识时,要使它暂时失效。仅当再从邻近顶点接收新消息的时候进行激活:

如果接收到新的组标识时要把结果进行存储:

接着要通知邻近顶点,包括向前与向后:

然后失效该顶点直到接收到新的消息:

合成算法

为了减少冗余的消息使得工作者算法更加高效,ArangoDB团队引入了消息合成算法。比方说在该示例中,德国节点可能会收到来自奥地利和瑞士的消息;由于按字母排序,奥地利的消息可以忽略,从而减少不必要的消息接收。在Pregel中的消息合成器可定义为:

合成器会筛选冗余消息,然后发送有效的标识信息:

引入该算法后,德国节点虽然有两个接壤点,但是只会收到一个消息。

pregelRunner模块

首先创建Runner实例:

Pregel算法的具体实现请点击这里进行下载。在Shell中载入该文件,使Runner可以实现相关函数:

然后在图中启动Pregel:

启动后会接收到唯一的执行码,可以使用runner来查阅当前运行状态:

执行完毕后可以得到图的结果名:

要检查该结果是否符合要求,可以载入全部顶点进行校对:

结果是正确的,算法能正确识别出4个子图(瑞士,突尼斯,乌拉圭,澳大利亚)。最后要做好收尾工作:

写在最后:

ArangoDB仍在进一步完善pregelRunner以满足更大规模图处理的需求。很多受时间和内存限制的大型图问题在Pregel系统中都可逐步解决,例如:最短路径,图着色,最小生成树等。

这篇关于借助ArangoDB,带你玩转Google图算法引擎Pregel的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966922

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/