从ETL与ELT谈起,理解数仓的任务

2024-05-07 01:28
文章标签 理解 数仓 任务 etl 谈起 elt

本文主要是介绍从ETL与ELT谈起,理解数仓的任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近有个朋友,有几十 PB 的异构数据,数据源包括 MySQL、DB2、Oracle、CSV、磁带机,等等,然后他需要把这些数据中的一些信息做关联整合,从这几十 PB 的数据中提取出若干业务字段到数据仓库,做统一分析。

数据载入

他让我推荐数据提取工具,我学习了一下,发现带 GUI 的开源工具里,AirByte 非常不错,界面大方,支持的 Connector 种类丰富。但是,当我深入研究下去发现一个问题,它的文档里居然没有任何从表格里提取出若干列做同步的描述,倒是支持把数据同步到目标库后,再基于 dbt 做自动转换的能力。再一学习才注意到:AirByte 是一个 E-L-T! 工具,而不是一个 ETL 工具!ELT、ETL,一字之差,用途相差万里。

  • E:Extract,指的是从源端拉取数据,可能是一个 SELECT、可能是 BINLOG、可能是一个文本文件读取动作
  • L:Load,指的是把数据装载到数据仓库,通常基于 INSERT 语句实现。
  • T:Transform,指的是对数据做转换。在 ETL 中,T 通常是由负责数据同步的软件来完成,在 ELT 中,这个门道就多了,负责数据同步的软件一定会做 E、L 两个操作,至于后面的 T,在 AirByte 中它提供的解决方案是 dbt,在其它系统里,可能会依赖目标库/湖的其它解决方案,可以非常灵活。

我以前觉得,ELT 是真好,方便多了。数据先入湖,以后随时用随时变换,多方便灵活。嗯,看上去很美。而实际上,对应的麻烦事可真是一大堆!

  • 数据传输成本大增。我朋友的这个案例里,他的原始数据有几十 PB,但是抽取后的目标数据,大概就是百 T 的水平。ETL 只需要传百 T 的数据,而 ELT 则需要传输几十 PB 的数据,百倍的差距。
  • 存储成本大增。全量数据存在目标库里,会有非常大的存储成本。还不敢随便用过期策略。
  • 管理成本大增。因为数据已经入了湖,但是里面大部分是永远用不到的垃圾数据,如何管理这些数据,也是个头疼事。

从这个实际案例我意识到,ETL、ELT 没有好坏之分,用 ETL 还是 ELT,还是要根据业务来选择。浪漫、性感,在成本面前,不值一提。

数仓

另一个直观的感受就是“数仓”的概念很具体了。数仓很大的价值点就是数据归集作用,这个案例里体现得非常明显。

我挺想给他推荐 OceanBase 开源版的,可惜他要求数据全场景加密,TDE(Transparent Data Encryption)必不可少。而这个我们没有开源。

另外就是我们的存储成本还是高,他的场景里,如果数据存在 S3 里,延迟大点也能接受,QPS 非常低,一天也就查几次。这个挺适合 4.4 的场景,但目标的场景不划算。

最后,他这个场景我给他推荐了 Snowflake,S3存储成本很低,QPS 非常低,说不定机器还可以随用随关。

其它

AirByte 不太行,于是看了 Kettle 和 Astera,感觉 Kettle 像是上个时代的产物,没人维护了一样,Astera 感觉可能还可以,但是网站也很老旧,十年前的风格。TapData 商业版看上去还挺不错的,DB2作为数据源都支持,但是,搜下来,发现居然不支持以 Snowflake 作为目标写入!!!!

熬!AirByte,你怎么就不支持 ETL 了呢!你完全可以支持一个 ETLT 呀!

这篇关于从ETL与ELT谈起,理解数仓的任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965938

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

分布式系统的个人理解小结

分布式系统:分的微小服务,以小而独立的业务为单位,形成子系统。 然后分布式系统中需要有统一的调用,形成大的聚合服务。 同时,微服务群,需要有交流(通讯,注册中心,同步,异步),有管理(监控,调度)。 对外服务,需要有控制的对外开发,安全网关。

Java IO 操作——个人理解

之前一直Java的IO操作一知半解。今天看到一个便文章觉得很有道理( 原文章),记录一下。 首先,理解Java的IO操作到底操作的什么内容,过程又是怎么样子。          数据来源的操作: 来源有文件,网络数据。使用File类和Sockets等。这里操作的是数据本身,1,0结构。    File file = new File("path");   字

理解java虚拟机内存收集

学习《深入理解Java虚拟机》时个人的理解笔记 1、为什么要去了解垃圾收集和内存回收技术? 当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。 2、“哲学三问”内存收集 what?when?how? 那些内存需要回收?什么时候回收?如何回收? 这是一个整体的问题,确定了什么状态的内存可以

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多