深度学习 --- stanford cs231学习笔记(一)

2024-05-06 19:28

本文主要是介绍深度学习 --- stanford cs231学习笔记(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

stanford cs231学习笔记(一)

 


1,先是讲到了机器学习中的kNN算法,然后因为kNN分类器的一些弊端,引入了线性分类器。

kNN算法的三大弊端:

(1),计算量大,当特征比较多时表示性差

(2),训练时耗时少,且计算需求低,反而是对测试数据分类时,计算需求量大。

(3),衡量两幅图像之间的差异时,衡量方式单一,例如L1,L2距离。且仅有的这两种方法效果都不理想。


2,引入线性分类器

        把图像的二维矩阵拉成一长条,变成一个向量x。对每个向量乘以一组权重系数W,得到一个分类的得分。也就是说,如果有10个类别的话,权重矩阵W就有10行。每行的权重系数对应了一个种类,比如说第一行对应的是猫的权重系数,那么第一行乘以x后,得到的值就是猫的得分。第二行是人,第二行乘以x后,就能得到对人的打分。依此类推,最终会得到10类的打分。

        上图为一个简化模型,假设图像只有4个像素,且总共只有3个类别的打分结果。可以看得出,这个打分结果是错误的,Dog的得分最高。而cat反而得了最低分。


3,如何选择正确的W,才能让相应类别的图像打分最高而在其他类型的图像上打分低?答案就是损失函数Loss function,用于衡量正对当前所使用的W矩阵分类的打分结果,有多么的unhappy不满意。

3,1,损失函数有两种,一种是SVM loss(也叫hinge loss),分数越高表示越unhappy,即越不满意。

其中s_{j}s_{y_{i}}表示经过Wx计算后的分数向量score vector,根据这种方式计算后得到的结果分别是:

 最终得到L函数的均值,对svm loss而言,分数越高,说明分类结果越不好。

3,2,另一种损失函数叫softmax(也叫cross-entropy loss),他把分数转化成了概率函数,然后再对这个概率函数求了一个负自然对数。

        负自然对数函数的图像如下图所示,又因为概率函数的值域在0~1之间,因此,最终L函数的值域应该是在正无穷大到0之间。概率越低损失函数越大,概率越大,也就是越接近1,损失函数的值越接近0。


4,Loss function用于如何评估权重W的合理性,相当于是一个“体检指标”。指标高了,说明W有病了,如果指标越低,则说明W越健康。如何有效的利用Loss函数去优化W呢?这时optimization就出现了,也叫优化函数。

既然,我们的目标是让损失函数L最小化,我们就应该试着找到怎么改变W才能让L减小的最多。这里用到了求极限的概念,也就是通过让W增加一个很小的变化h,然后观察L值的变化。


5,改变W后L的变化有可能变大,也有可能变小。而我们的目的是希望找到让L减小最快的W。这时,就引出了optimization优化

        常见的优化方式是梯度下降法,梯度下降法的原理是源于函数f在点P处的梯度一定是函数f在P点处的所有方向导数中增加最大的方向导数。因此,我们要想让函数f减小的最多,我们只需让自变量x沿着这一方向变化即可。


6,为了防止过拟合,在Loss函数中还可以加入Regularization正则化函数。

他能够使得拟合出来的函数尽可能的简单。


 (全文完) 

--- 作者,松下J27

参考文献(鸣谢): 

1,Stanford University CS231n: Deep Learning for Computer Vision

2,https://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D%E6%B3%95

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于深度学习 --- stanford cs231学习笔记(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965164

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件