Python 全栈系列241 GFGo Lite迭代

2024-05-06 15:28

本文主要是介绍Python 全栈系列241 GFGo Lite迭代,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

随着整个算网开发逐渐深入,各个组件、微服务的数量、深度在不断增加。由于算网是个人项目,我一直按照MVP(Minimum Viable Product )的原则在推进。由于最初的时候对架构、算法和业务的理解并没有那么深刻,所以MVP的内容还是在不断变化(增加)的。比较幸运的是,中间走的弯路比较少,整体方向上一直没有大偏差,应该可以在预期的时间内达到目标。

从工具和使用的角度来看,我一边在算网的概念下构造工具,一边在尝试使用这些工具提高我的效率/能力上限。过去,由于已知的、明确要实现的功能就很多,所以一直是不断急速前进,常见的一种情况是:工具开发好了,测试也好用,但是就扔在一边,继续开发别的新工具去了。

现在的情况是:完成一个MVP所需要新开发的功能几乎没有了,反而是将已有的工具用起来比较重要。

今年做的比较重要的改变是使用streamlit、gradio将微服务前后端一体化。这种方式最初是大语言模型广泛采用的,的确非常方便。对算网而言,大量的已开发组件和功能,将通过这种方式进行文档、测试和使用的一体化。

在这里插入图片描述

总之,现在的重点是实现(Realization)。

内容

1 GlobalFunc更新

1.1 程序

目前仍然采用vscode代码开发的方式,创建一个个新的py文件。

1.2 推送更新

步骤如下:

  • 1 切到项目路径下cd .../m4git/GlobalFunc
  • 2 导入操作对象
from op044_GlobalFunc_01BaseOpt import gfbase# 1 查看当前分枝
gfbase._get_current_branch()
# 2 扫描所有文件的信息
scan_dict = gfbase._get_scan_files()
# 3 提交git项目
gfbase._simple_commit_git()
# 4 刷新一个包的初始化文件
gfbase._generate_init_py('Base')
gfbase._generate_init_py('Parse')
gfbase._generate_init_py('TFIDF')
# 5 批量存储函数
some_pack_list = [x for x in scan_dict.keys() if x.startswith('Base.') or x.startswith('Parse.') or x.startswith('TFIDF.')]for some_file in some_pack_list:gfbase._save_a_file_rom(some_file)

在这里插入图片描述

2 GFGo Lite 更新

GFGo Lite 有所修改,文件在项目文件夹gfgo_lite_24090 下面

2.1 文件

切入gfgo_lite_build容器,里面已经有了一些依赖文件

  • 1 init_funcs 里面存放了数据库连接相关的函数
  • 2 按模块执行加载,然后初始化

以下是从Base模块中加载一些函数的示例

from init_funcs import create_file,generate_init_py,RedisOrMongo, Naiveimport os 
import json
# 声明空间# 在容器中启动
redis_cfg = Naive()
redis_cfg.redis_agent_host = 'http://172.17.0.1:24021/'
redis_cfg.redis_connection_hash = None# 模块Base
if True:# 声明当前要创建的程序文件夹:默认为funcstarget_folder = 'GlobalFunc'tier1 = 'sp_GlobalFunc'var_space_name = 'Base'# 分支,一般默认为masterbranch_name = 'master' tier2 = '_'.join([var_space_name, branch_name])the_space_name = '.'.join([tier1,tier2])target_folder = target_folder + '/' + var_space_nameos.makedirs(target_folder, exist_ok=True)rom = RedisOrMongo(the_space_name, redis_cfg.dict(),backend='mongo', mongo_servername='m7.24065')# 这个一般根据需要,或者代码中得来 --- 需要的列表项func_list = [ 'from_pickle','to_pickle','is_file_exists','gen_time_axis','ATimer2','get_time_str1','cols2s','create_folder_if_notexist','flat_dict','flatten_list']# func_list = [ 'from_pickle','to_pickle','pose_a_file']for some_name in func_list:# 获取 meta,data : data就是代码字符the_data = rom.getx(some_name)filename = the_data['meta']['name']filedata = the_data['data']create_file(target_folder, filename, filedata)# 生成初始化文件generate_init_py(target_folder)

在导入新的包时,需要手动修改GlobalFunc下的__init__.py(与Base包和Parse包平级)。

from . import Base
from . import Parse

2.2 服务

/workspace下直接启动服务即可 python3 server.py

3 应用

3.1 通用函数 UCS

UCS是一个规范,为了支持这个规范,必须依赖一些特定(同时也是固定)的函数。因为函数的通用性,所以这些函数放在了最外层,每个函数都占据了一个api接口。

3.1.1 block (int)

整型block分割三件套

import requests as req some_dict = {}
some_dict['rec_id'] = 111111res = req.post('http://127.0.0.1:8000/get_brick_name/', json = some_dict).json()'0.0.0.11'some_dict = {}
some_dict['brick_name'] = '0.0.0.11'res = req.post('http://127.0.0.1:8000/get_brick_bounds/', json = some_dict).json()
[110000.0, 120000.0]some_dict = {}
some_dict['start_brick_name'] = '0.0.0.9'
some_dict['end_brick_name'] = '0.0.0.12'res = req.post('http://127.0.0.1:8000/get_brick_list/', json = some_dict).json()
['0.0.0.9', '0.0.0.10', '0.0.0.11'
3.1.2 time block

操作如下:时间支持字符和数值(时间戳)两种模式。

import requests as req # char
some_dict = {}
some_dict['dt_str_or_ts'] = '2024-01-31 11:11:11'
res = req.post('http://127.0.0.1:8000/get_time_brick_name/', json = some_dict).json()
'2024.01.31.11'# num
some_dict = {}
some_dict['dt_str_or_ts'] = 1706670671
res = req.post('http://127.0.0.1:8000/get_time_brick_name/', json = some_dict).json()
'2024.01.31.11'# char 
some_dict = {}
some_dict['brick_name'] = '2024.01.31.11'
some_dict['char_or_num'] = 'char'
res = req.post('http://127.0.0.1:8000/get_time_brick_bounds/', json = some_dict).json()'''
In [13]: res
Out[13]: ['2024-01-31 11:00:00', '2024-01-31 12:00:00']
'''# num 
some_dict = {}
some_dict['brick_name'] = '2024.01.31.11'
some_dict['char_or_num'] = 'num'
res = req.post('http://127.0.0.1:8000/get_time_brick_bounds/', json = some_dict).json()'''
In [15]: res
Out[15]: [1706670000, 1706673600]
'''some_dict = {}
some_dict['start_brick_name'] = '2024.01.31.11'
some_dict['end_brick_name'] = '2024.02.02.11'
res = req.post('http://127.0.0.1:8000/get_time_brick_list/', json = some_dict).json()'''
In [11]: res
Out[11]:
['2024.01.31.11','2024.01.31.12','2024.01.31.13','2024.01.31.14',...
'''

3.2 功能函数

3.2.1 Base包的函数调用

以下是两个Base包函数的测试

import requests as req # 测试1:调用Base包的函数
kwargs = {'ts':None, 'bias_hours':8}
pack_func = 'Base.get_time_str1'some_dict = {}
some_dict['kwargs'] = kwargs
some_dict['pack_func'] = pack_funcres = req.post('http://127.0.0.1:8000/gfgo/', json = some_dict).json()
'2024-05-05 11:04:35'# 测试2:列表扁平化
kwargs = {'nested_list':[[1,2],[3],[4,5]]}
pack_func = 'Base.flatten_list'some_dict = {}
some_dict['kwargs'] = kwargs
some_dict['pack_func'] = pack_funcres = req.post('http://127.0.0.1:8000/gfgo/', json = some_dict).json()
[1, 2, 3, 4, 5]

有两点需要注意:

  • 1 函数规范为全部关键字参数输入(主要是为了方便调用)
  • 2 接口直接返回处理信息(而不是包上状态和消息)
3.3.3 Parse包的函数调用
x = "This is a sample text."
word_list = ["sample", "test", "string"]kwargs = {'x':x, 'word_list':word_list}
pack_func = 'Parse.judge_existence'some_dict = {}
some_dict['kwargs'] = kwargs
some_dict['pack_func'] = pack_funcres = req.post('http://127.0.0.1:8000/gfgo/', json = some_dict).json()True

3.4 服务迭代

推送新的变化
docker push myregistry.domain.com:24052/worker.andy.gfgo_lite_24090:v101
启动服务

docker run -d \--restart=always \--name=gfgo_lite_24090 \-v /etc/localtime:/etc/localtime  \-v /etc/timezone:/etc/timezone\-v /etc/hostname:/etc/hostname\-e "LANG=C.UTF-8" \-w /workspace\-p 24090:8000\myregistry.domain.com:24052/worker.andy.gfgo_lite_24090:v101 \sh -c "python3 server.py"

公网调用

In [3]:...: some_dict = {}...: some_dict['brick_name'] = '2024.01.31.11'...: some_dict['char_or_num'] = 'num'...: res = req.post('http://WAN_IP:24090/get_time_brick_bounds/', json = some_dict).json()In [4]: res
Out[4]: [1706670000, 1706673600]

4 总结与展望

RuleSet As A Func

将复杂的规则(判定)作为一个函数调用。

Series Apply

每个函数都要支持列表(多个元素)的并行处理。

踩过的一个小坑:GlobalFunc使用了一个公网机的Redis做ROM,而GFGoLite使用m7本地的redis,导致了逻辑上看起来更新了,但是实际未更新。

这篇关于Python 全栈系列241 GFGo Lite迭代的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964710

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0