算法打卡day42

2024-05-06 06:12
文章标签 算法 打卡 day42

本文主要是介绍算法打卡day42,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今日任务:

1)121. 买卖股票的最佳时机

2)122.买卖股票的最佳时机II

3)复习day17

121. 买卖股票的最佳时机

题目链接:121. 买卖股票的最佳时机 - 力扣(LeetCode)

给定一个数组 prices,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1哔哩哔哩bilibili

思路:

这是一道经典的股票买卖问题,可以通过动态规划来解决。我们可以维护两个变量来记录当前的最低买入价格和最大利润。遍历股票价格数组,对于每一天的股票价格,我们更新最低买入价格和最大利润:

  1. 如果当前股票价格低于最低买入价格,则更新最低买入价格为当前价格;
  2. 否则,计算当前股票价格与最低买入价格之差,更新最大利润为当前利润与已记录的最大利润的较大值。
class Solution:def maxProfit(self, prices: List[int]) -> int:if not prices:return 0# 初始化最低买入价格和最大利润min_price = prices[0]max_profit = 0# 遍历股票价格数组for price in prices[1:]:# 更新最低买入价格min_price = min(min_price, price)# 计算当前利润profit = price - min_price# 更新最大利润max_profit = max(max_profit, profit)return max_profit

 

122.买卖股票的最佳时机II

题目链接:122. 买卖股票的最佳时机 II - 力扣(LeetCode)

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II哔哩哔哩bilibili

思路:

 

我们可以用动态规划来解决这个问题。在这个问题中,我们只关心最终能够获得的利润,而不需要具体的交易路径。因此,我们可以定义两个状态变量:

  1. hold:表示当前持有股票时的最大利润。
  2. not_hold:表示当前不持有股票时的最大利润。

对于每一天,我们有三种操作:

  1. 保持持有状态,即不卖出,这样利润不变。
  2. 卖出股票,这样我们的利润将增加当前股票的价格。
  3. 买入股票,这样我们的利润将减少当前股票的价格。

我们的目标是选择操作使得最终的利润最大化。因此,我们可以通过比较这三种操作的结果来更新状态变量 holdnot_hold

具体步骤如下:

  1. 首先,我们初始化 hold 为负无穷,表示当前不可能持有股票,而 not_hold 为 0,表示当前没有股票,利润为 0。
  2. 然后,我们遍历每一天的股票价格,对于每一天,我们都更新 holdnot_hold
    • 如果选择保持持有状态,即不卖出,则当前持有股票时的最大利润为上一状态的 hold
    • 如果选择卖出股票,则当前不持有股票时的最大利润为上一状态的 hold 加上当前股票价格。
    • 如果选择买入股票,则当前持有股票时的最大利润为上一状态的 not_hold 减去当前股票价格。
  3. 最终,我们返回 not_hold,因为在最后一天,我们希望不持有股票以获取最大利润。
class Solution:def maxProfit(self, prices: List[int]) -> int:if not prices:return 0# 定义状态变量hold = float('-inf')  # 持有股票时的最大利润not_hold = 0           # 不持有股票时的最大利润# 遍历股票价格数组for price in prices:# 计算当前持有股票时的最大利润hold = max(hold, not_hold - price)# 计算当前不持有股票时的最大利润not_hold = max(not_hold, hold + price)return not_hold

注意这里的hold(持有股票),我可以选择继续持有上一个状态的股票,就是继承上一状态的hold,也可以选择在当天持有股票,如果持有当前股票,那么此刻hold上一状态不持有股票的金额-当前股票价钱,比较这两个hold,谁大选择谁

no_hold(不持有股票),我们可以选择卖掉已经持有的股票,那么no_hold上一状态持有股票的金额+当前股票价格,另一种我们可以选择继续继承上一状态的不持有,比较这两个no_hold谁更大

 

 

这篇关于算法打卡day42的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963604

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖