代码随想录算法训练营Day30 | 332.重新安排行程、51. N皇后、37. 解数独、回溯算法总结 | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day30 | 332.重新安排行程、51. N皇后、37. 解数独、回溯算法总结 | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 332.重新安排行程
    • 做题
    • 看文章
  • 51. N皇后
    • 做题
    • 看文章
  • 37. 解数独
    • 做题
    • 看文章
  • 回溯算法总结
  • 以往忽略的知识点小结
  • 个人体会

332.重新安排行程

代码随想录:332.重新安排行程
Leetcode:332.重新安排行程

做题

无思路。

看文章

from collections import defaultdictclass Solution:def findItinerary(self, tickets):targets = defaultdict(list)  # 创建默认字典,用于存储机场映射关系for ticket in tickets:targets[ticket[0]].append(ticket[1])  # 将机票输入到字典中for key in targets:targets[key].sort(reverse=True)  # 对到达机场列表进行字母逆序排序result = []self.backtracking("JFK", targets, result)  # 调用回溯函数开始搜索路径return result[::-1]  # 返回逆序的行程路径def backtracking(self, airport, targets, result):while targets[airport]:  # 当机场还有可到达的机场时next_airport = targets[airport].pop()  # 弹出下一个机场self.backtracking(next_airport, targets, result)  # 递归调用回溯函数进行深度优先搜索result.append(airport)  # 将当前机场添加到行程路径中

感觉比较有意思的是,这样处理一定能找出唯一的路径。先碰到后续为None的机场,才存入result数组,然后再逆序输出结果。
文章其实主要提到了容器的选择,这里用python,基本就是dict或者defaultdict。

51. N皇后

代码随想录:51. N皇后
Leetcode:51. N皇后

做题

无思路。感觉回溯其实就是遍历?但在遍历中如何移动皇后?随机移动吗?

看文章

核心为写isValid函数,判断是否能在当前位置放置皇后。这里注意的是:初始化chessboard时,每一行都是一个字符串,整个chessboard是一个list,故在放置或拿开皇后时,只能用字符串拼接,而不能直接修改str。如果将chessboard设置成二维list,在在放置或拿开皇后时,可以直接修改每一行元素,但需要对二维数组进行深拷贝。

class Solution:def solveNQueens(self, n: int) -> List[List[str]]:result = []  # 存储最终结果的二维字符串数组chessboard = ['.' * n for _ in range(n)]  # 初始化棋盘self.backtracking(n, 0, chessboard, result)  # 回溯求解return [[''.join(row) for row in solution] for solution in result]  # 返回结果集def backtracking(self, n: int, row: int, chessboard: List[str], result: List[List[str]]) -> None:if row == n:result.append(chessboard[:])  # 棋盘填满,将当前解加入结果集returnfor col in range(n):if self.isValid(row, col, chessboard):chessboard[row] = chessboard[row][:col] + 'Q' + chessboard[row][col+1:]  # 放置皇后self.backtracking(n, row + 1, chessboard, result)  # 递归到下一行chessboard[row] = chessboard[row][:col] + '.' + chessboard[row][col+1:]  # 回溯,撤销当前位置的皇后def isValid(self, row: int, col: int, chessboard: List[str]) -> bool:# 检查列for i in range(row):if chessboard[i][col] == 'Q':return False  # 当前列已经存在皇后,不合法# 检查 45 度角是否有皇后i, j = row - 1, col - 1while i >= 0 and j >= 0:if chessboard[i][j] == 'Q':return False  # 左上方向已经存在皇后,不合法i -= 1j -= 1# 检查 135 度角是否有皇后i, j = row - 1, col + 1while i >= 0 and j < len(chessboard):if chessboard[i][j] == 'Q':return False  # 右上方向已经存在皇后,不合法i -= 1j += 1return True  # 当前位置合法

时间复杂度: O(n!)
空间复杂度: O(n)

将chessboard设置成二维list的AC代码:

class Solution:def solveNQueens(self, n: int) -> List[List[str]]:result = []  # 存储最终结果的二维字符串数组chessboard = [['.'] * n for _ in range(n)]  # 初始化棋盘self.backtracking(n, 0, chessboard, result)  # 回溯求解return [[''.join(row[:]) for row in solution] for solution in result]  # 返回结果集def backtracking(self, n: int, row: int, chessboard: List[str], result: List[List[str]]) -> None:if row == n:result.append(copy.deepcopy(chessboard))  # 棋盘填满,将当前解加入结果集returnfor col in range(n):if self.isValid(row, col, chessboard):chessboard[row][col] = 'Q' # 放置皇后self.backtracking(n, row + 1, chessboard, result)  # 递归到下一行chessboard[row][col] = '.'  # 回溯,撤销当前位置的皇后def isValid(self, row: int, col: int, chessboard: List[str]) -> bool:# 检查列for i in range(row):if chessboard[i][col] == 'Q':return False  # 当前列已经存在皇后,不合法# 检查 45 度角是否有皇后i, j = row - 1, col - 1while i >= 0 and j >= 0:if chessboard[i][j] == 'Q':return False  # 左上方向已经存在皇后,不合法i -= 1j -= 1# 检查 135 度角是否有皇后i, j = row - 1, col + 1while i >= 0 and j < len(chessboard):if chessboard[i][j] == 'Q':return False  # 右上方向已经存在皇后,不合法i -= 1j += 1return True  # 当前位置合法

这种写法在复杂度上差不多,但个人比较喜欢,主要是因为在修改字符时比较好理解,但二维数组需要进行深拷贝,具体为result.append(copy.deepcopy(chessboard))。

37. 解数独

代码随想录:37. 解数独
Leetcode:37. 解数独

做题

isValid函数可以写出来,回溯部分卡壳了。

看文章

class Solution:def solveSudoku(self, board: List[List[str]]) -> None:"""Do not return anything, modify board in-place instead."""self.backtracking(board)def backtracking(self, board: List[List[str]]) -> bool:# 若有解,返回True;若无解,返回Falsefor i in range(len(board)): # 遍历行for j in range(len(board[0])):  # 遍历列# 若空格内已有数字,跳过if board[i][j] != '.': continuefor k in range(1, 10):if self.is_valid(i, j, k, board):board[i][j] = str(k)if self.backtracking(board): return Trueboard[i][j] = '.'# 若数字1-9都不能成功填入空格,返回False无解return Falsereturn True # 有解def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool:# 判断同一行是否冲突for i in range(9):if board[row][i] == str(val):return False# 判断同一列是否冲突for j in range(9):if board[j][col] == str(val):return False# 判断同一九宫格是否有冲突start_row = (row // 3) * 3start_col = (col // 3) * 3for i in range(start_row, start_row + 3):for j in range(start_col, start_col + 3):if board[i][j] == str(val):return Falsereturn True

这里有个点,递归是从头重新遍历,是不是可以从下一个位置遍历?不行!因为代码是一个一个数字放的,而不是一个一个格子遍历。

回溯算法总结

代码随想录:回溯算法总结
熟悉常见提醒后,可以再看看复杂度的计算。

以往忽略的知识点小结

  • 灵活使用defaultdict
  • 棋盘问题,主要是写isValid函数,然后回溯(N皇后:放和不放;数独:放哪个数字)
  • 二维数组需要进行深拷贝,比如copy.deepcopy(chessboard)

个人体会

完成时间:1h50min。
心得:题比较难,时间比较紧张,主要是熟悉思路。

这篇关于代码随想录算法训练营Day30 | 332.重新安排行程、51. N皇后、37. 解数独、回溯算法总结 | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963486

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2