c++ BSTree二叉搜索树(附原码)

2024-05-06 04:36
文章标签 c++ 搜索 二叉 原码 bstree

本文主要是介绍c++ BSTree二叉搜索树(附原码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、概念

二、基本操作

1、插入

2、中序遍历

3、删除

4、查找

5、总结删除

三、应用场景

四、原码



一、概念

左子树比根小,右子树比根大
意义:最多查找高度次数
不需要排序,就达到了二分查找的效率
同时还弥补了单纯数组的插入删除效率低的问题
其中序遍历,是一个升序,所以也叫做二叉排序树

默认定义,搜索树不允许冗余,搜索树也不允许修改
k模型的搜索树不可以修改,因为修改,那就破坏了搜索树的基本结构
k-v模型的搜索树可以修改,修改val部分,搜索树以key为参考构成搜索树

二、基本操作

1、插入

小的插入左边,大的插入右边

注意,先后插入的顺序不同,会导致树的结构不同

2、中序遍历

中序遍历,需要根节点,但是根节点为私有,怎么办?

1)友元(不推荐)
2)缺省参数、
3)再套一层
什么意思?
将函数设置为私有
再在public部分写一个函数2调用函数1

		//4、中序void Inorder(){_Inorder(_root);cout << endl;}private:void _Inorder( Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << ":" << root->_val << endl;_Inorder(root->_right);}

3、删除

替换法(此处的代码逻辑是右子树的最小节点
左子树的最大节点:保证比所有左子树都大
右子树的最小节点:保证比所有右子树都小
交换,删除
但是左子树的最大节点或者右子树的最小节点并不一定是叶子节点
有可能带有节点,所以,需要特殊判断处理

删一个叶子、带一个孩子、带两个孩子,画图依次判断情况

1、带有一个孩子节点的情况:(顺带没有孩子的也解决了,因为链接的是空)
如果我只有一个右孩子,那就要看我是父节点的左孩子还右孩子,需要判断
父节点链接我的右孩子
如果我只有一个左孩子,同样的道理,父节点链接我的左孩子

2、带有两个孩子的节点的删除
替换法:
左子树的最大节点(最右节点),右子树的最小节点(最左节点)
交换,删除
但是要注意个特殊情况:即左子树没有最大节点,右子树没有最小节点,就要单独判断

还有一个坑:
如果根节点的左子树为空,此删除根节点就会出错,因为根据代码逻辑,此时的根节点已经没有了parent
需要单独判断

4、查找

这个简单

5、总结删除

有两种情况:

1、删除叶子节点

2、删除非叶子节点

1)删除带有一个孩子的节点(左/右)
可以把删除叶子节点一同处理,即叶子节点不需要特殊处理
为什么?删除带有一个孩子的节点
其父节点都要链接上该节点的左孩子/右孩子
如果是叶子节点,那么左孩子/右孩子是空,就直接连接上了

除了以上的正常情况
还需要考虑删除的是根节点
也就是单支树的情况
此时也要特殊处理

2)删除带两个孩子的节点
找右子树的最左边节点
又分两种情况:
a、没有最左节点
b、有最左节点

总之,画图!画图!画图!自己分析。不懂,拿我原码去看,推逻辑,自己手撕一遍,从头到尾。如此,抽丝剥茧,一砖一瓦,焉有不会之理?


三、应用场景


1、k模型
构建一个搜索树
查找一个key在不在搜索树内
例如查找文本错误单词

2、k-v模型(key-val)
通过key查找value
可以统计某个关键词次数


搜索二叉树有一个致命点:
当key为有序,就会构成仅有左子树/右子树(单支)的结构,即退化
因此,又有了AVL树和红黑树,解决左右子树高度平衡的问题,即所谓平衡树

四、原码

#pragma once
#include<iostream>
using namespace std;namespace myspace
{template<class K, class V >struct BSTreeNode{BSTreeNode<K, V>* _left;BSTreeNode<K, V>* _right;K _key;V _val ;BSTreeNode(const K& key, const V& val ):_key(key),_val(val),_left(nullptr),_right(nullptr){}};template<class K, class V>class BSTree{typedef BSTreeNode<K,V> Node;public://1、插入bool insert(const K& key, const V& val = 0){//已经存在节点,返回false,不存在,插入(不冗余)if(_root == nullptr){_root = new Node(key,val);return true;}Node* cur = _root;Node* parent = _root;//根节点不为空while (cur){if (key < cur->_key){parent = cur;cur = cur->_left;}else if(key > cur->_key){parent = cur;cur = cur->_right;}else{return false;}}//找到空节点if (key < parent->_key){parent->_left = new Node(key,val);}else{parent->_right = new Node(key,val);}return true;}//2、删除bool erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (key < cur->_key){parent = cur;cur = cur->_left;}else if(key > cur->_key){parent = cur;cur = cur->_right;}else//找到节点{if (cur->_left == nullptr)//左孩子为空{if (cur == _root)//右单支树{_root = cur->_right;}else{if (parent->_left->_key == cur->_key){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->_right == nullptr)//右孩子为空{if (cur == _root)//左单支树{_root = cur->_left;}else{if (parent->_left->_key == cur->_key){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else//两个孩子均不为空{//从cur开始,找右子树的最小,即右子树的最左Node* rightMinparent = cur;Node* rightMin = cur->_right;while (rightMin->_left){rightMinparent = rightMin;rightMin = rightMin->_left;}//到这里,说明找到了rightMinswap(cur->_key,rightMin->_key);if (rightMinparent->_left == rightMin)//正常情况下,存在rightMin{rightMinparent->_left = rightMin->_right;}else//不存在rightMin{rightMinparent->_right = rightMin->_right;}delete rightMin;}return true;}}//走到这里,说明找到空了也没有找到return false;}//3、查找Node* find(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key == key){return cur;}if (key < cur->_key){parent = cur;cur = cur->_left;}else{parent = cur;cur = cur->_right;}}//走到这里,说明找到空了也没有找到return nullptr;}//4、中序void Inorder(){_Inorder(_root);cout << endl;}private:void _Inorder( Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << ":" << root->_val << endl;_Inorder(root->_right);}private:Node* _root = nullptr;};void BSTreetest1(){BSTree<int, int> bs;bs.insert(1,1);bs.insert(2,2);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(3,3);bs.insert(4,4);bs.insert(5,99);bs.insert(6,100);bs.Inorder();if (bs.find(100))cout << "存在" << endl;elsecout << "不存在" << endl;}void BSTreetest2()//右子树没有最左节点{BSTree<int, int> bs;bs.insert(10);bs.insert(3);bs.insert(18);bs.insert(2);bs.insert(8);bs.insert(9);bs.insert(12);bs.insert(16);bs.Inorder();bs.erase(3);bs.Inorder();}void BSTreetest3()//右子树有最左节点{BSTree<int, int> bs;bs.insert(10);bs.insert(3);bs.insert(18);bs.insert(2);bs.insert(8);bs.insert(9);bs.insert(12);bs.insert(16);bs.insert(5);bs.insert(6);bs.Inorder();bs.erase(3);bs.Inorder();}void BSTreetest4()//右单支树,{BSTree<int, int> bs;bs.insert(1);bs.insert(2);bs.insert(3);bs.insert(4);bs.Inorder();bs.erase(1);bs.Inorder();}void BSTreetest5()//左单支树,{BSTree<int, int> bs;bs.insert(4);bs.insert(3);bs.insert(2);bs.insert(1);bs.Inorder();bs.erase(1);bs.Inorder();}}

这篇关于c++ BSTree二叉搜索树(附原码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963437

相关文章

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.