压缩感知的MP算法

2024-05-06 04:08
文章标签 算法 压缩 mp 感知

本文主要是介绍压缩感知的MP算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


2.MP算法

作为一类贪婪算法,MP算法的基本思路是在迭代中不断找寻最有测量矩阵列来逼近被表示向量,继而寻得最优的稀疏逼近,使得x与y的残差最小。对于这个算法,最直观的问题有两个:1.如何选择逼近度最高的——如何衡量逼近度,算法如何执行(比如遍历)?2.x的稀疏度由迭代次数决定,而逼近度(即最终残差)也与迭代次数有关,这是一个两难问题,如何做权衡?

在回答以上两个问题之前,我们先给出MP算法的具体过程:


示例代码如下:(与matlab中MP介绍时的示例相同)

clear all
close all
%
A = [1 0.5 -1/2^0.5;0 (3/4)^0.5 -1/2^0.5];
y = [1,0.5]';
K = 3;
[m,n] = size(A);% iteration
Rf(:,1) = y;
for k = 1:Kfor i = 1:n ip(i) = abs(Rf(:,k)'*A(:,i));endj(k) = find(max(ip)==ip);Rf(:,k+1) = Rf(:,k) - Rf(:,k)'*A(:,j(k))*A(:,j(k));Rfnorm(k) = norm(Rf(:,k));
end
R = [A(:,j(1)),A(:,j(2)),A(:,j(3))];
r1 = R(:,1);
r2 = R(:,2);
r3 = R(:,3);
figure,quiver(0,0,y(1),y(2),'r');
hold,quiver(0,0,r1(1),r1(2),'b');
quiver(0,0,r2(1),r2(2),'b');
quiver(0,0,r3(1),r3(2),'b');
display(norm(Rf(:,K+1)));

编程遇到的简单问题:

1.每次迭代选择A中列向量时,为什么不需要把上次选择的去除掉?

因为每次迭代的残差是由上次的残差减去已选择的A的列计算得到的,剩余残差(恰好衡量与已选列的差异性)在已选列向量的投影将变得很小。因此没有必要去除已选列。

2.随机字典A的生成

示例中未涉及这个问题,但是仿真往往需要。matlab命令式norm(a,b,c,d),产生均值a,方差b,大小c*d的随机矩阵。

3.如何画向量?

画箭头的命令是quiver(x,y,u,v),xy为顶点,uv为向量。


这篇关于压缩感知的MP算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963402

相关文章

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖