算法打卡day41

2024-05-05 21:36
文章标签 算法 打卡 day41

本文主要是介绍算法打卡day41,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今日任务:

1)198.打家劫舍

2)213.打家劫舍II

3)337.打家劫舍III

4)复习day16

198.打家劫舍

题目链接:198. 打家劫舍 - 力扣(LeetCode)

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。   偷窃到的最高金额 = 1 + 3 = 4 。示例 2:
输入:[2,7,9,3,1]
输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。   偷窃到的最高金额 = 2 + 9 + 1 = 12。提示:
0 <= nums.length <= 100
0 <= nums[i] <= 400

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划,偷不偷这个房间呢?| LeetCode:198.打家劫舍哔哩哔哩bilibili

思路:

这个问题是一个典型的动态规划问题。我们可以使用动态规划来解决这个问题,其中关键是定义状态和状态转移方程。

状态定义:
定义一个数组 dp,其中 dp[i] 表示偷窃前 i 个房屋所能获取的最高金额。

状态转移方程:
考虑偷窃第 i 个房屋,有两种情况:

  1. 偷窃第 i 个房屋:如果偷窃第 i 个房屋,则不能偷窃第 i-1 个房屋,因此偷窃金额为 nums[i] + dp[i-2]
  2. 不偷窃第 i 个房屋:如果不偷窃第 i 个房屋,则偷窃金额与偷窃前 i-1 个房屋所能获取的最高金额相同,即 dp[i-1]

因此,动态转移方程为:

dp[i] = max(dp[i-1], dp[i-2] + nums[i])

初始状态:

  • 第一个房屋只有一间,因此偷窃它即可,即 dp[0] = nums[0]
  • 第二个房屋偷窃与不偷窃中选择金额较大的方案,即 dp[1] = max(nums[0], nums[1])

返回结果:
最终结果为 dp[-1],表示偷窃前所有房屋所能获取的最高金额。

class Solution:def rob(self, nums: List[int]) -> int:if not nums:  # 如果没有房屋,返回0return 0if len(nums) == 1:  # 如果只有一个房屋,返回其金额return nums[0]# 定义动态规划数组,dp[i] 表示偷窃前 i 个房屋所能获取的最高金额dp = [0] * (len(nums))dp[0] = nums[0]  # 第一个房屋只有一间,偷窃它即可dp[1] = max(nums[0], nums[1])  # 前两个房屋,选择金额较大的偷窃# 动态转移方程:偷窃当前房屋与不偷窃当前房屋的最大值for i in range(2, len(nums)):dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])return dp[-1]

213.打家劫舍II

题目链接:213. 打家劫舍 II - 力扣(LeetCode)

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。示例 3:
输入:nums = [0]
输出:0提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划,房间连成环了那还偷不偷呢?| LeetCode:213.打家劫舍II哔哩哔哩bilibili

思路:

这个问题与之前的类似,但有一个额外的条件:房屋围成一圈。因此,我们需要特殊处理这个情况。

我们可以将这个问题拆分成两个子问题:

  1. 偷窃第一个房屋,不偷窃最后一个房屋。
  2. 偷窃最后一个房屋,不偷窃第一个房屋。

然后,我们可以使用动态规划来解决这两个子问题,最后取两个子问题中的最大值作为结果。

具体的动态规划解决方案如下:

  1. 对于第一个子问题,我们可以使用与之前类似的动态规划方法来解决。假设 dp1[i] 表示偷窃前 i 个房屋(第一个房屋被偷窃)所能获取的最高金额,则有以下状态转移方程:

    dp1[i] = max(dp1[i-1], dp1[i-2] + nums[i]) 其中 dp1[0] = nums[0],dp1[1] = max(nums[0], nums[1])
  2. 对于第二个子问题,同样使用动态规划方法。假设 dp2[i] 表示偷窃前 i 个房屋(最后一个房屋被偷窃)所能获取的最高金额,则有以下状态转移方程:

    dp2[i] = max(dp2[i-1], dp2[i-2] + nums[i]) 其中 dp2[0] = 0dp2[1] = nums[1]

最终,我们可以将两个子问题的最终结果进行比较,取其中较大的值作为最终结果。

class Solution:def rob(self, nums: List[int]) -> int:if not nums:  # 如果没有房屋,返回0return 0if len(nums) == 1:  # 如果只有一个房屋,返回其金额return nums[0]# 计算偷窃第一个房屋,不偷窃最后一个房屋的最高金额res1 = self.rob_range(nums,0,len(nums)-2)# 计算偷窃最后一个房屋,不偷窃第一个房屋的最高金额res2 = self.rob_range(nums,1,len(nums)-1)# 取两个子问题的最大值作为最终结果return max(res1,res2)# 动态规划解决子问题def rob_range(self,nums: List[int], start: int, end: int) -> int:if end == start:return nums[start]# 创建一个数组用于存储每个房屋偷窃时的最高金额dp = [0]*(end-start+1)# 初始化前两个房屋的最高金额dp[0] = nums[start]dp[1] = max(nums[start],nums[start+1])for i in range(2, end - start + 1):# 在偷窃当前房屋和不偷窃当前房屋之间选择金额较大的方案dp[i] = max(dp[i-1],dp[i-2]+nums[start+i])return dp[-1]

337.打家劫舍III

题目链接:337. 打家劫舍 III - 力扣(LeetCode)

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。示例 1:
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7示例 2:
输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9提示:
树的节点数在 [1, 104] 范围内
0 <= Node.val <= 104

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划,房间连成树了,偷不偷呢?| LeetCode:337.打家劫舍3哔哩哔哩bilibili

思路:

在这个问题中,我们有一棵二叉树,表示小偷可以盗取的房屋。每个节点表示一个房屋,节点的值表示房屋内的现金。树中的相邻节点表示相邻的房屋,如果相邻的房屋在同一晚上被打劫,系统会自动报警。

我们的目标是计算在不触发警报的情况下,小偷一晚能够盗取的最高金额。

解决这个问题的一种方法是使用动态规划。我们可以定义一个递归函数rob(root),其中 root 是当前节点。对于每个节点,我们有两种选择:

  1. 盗取当前节点和其孙子节点的价值,然后考虑其孙子节点的左右孩子。
  2. 不盗取当前节点,而是考虑其两个子节点。

我们可以通过递归地计算这两种选择来获得最大金额。但是,这样的方法可能会导致大量的重复计算。为了避免这种情况,我们可以使用记忆化搜索或动态规划来优化递归解法。在动态规划方法中,我们可以定义一个状态数组 dp,其中 dp[node] 表示盗取以 node 为根节点的子树所能获得的最大金额。然后,我们可以根据状态转移方程来计算 dp[node]。

具体地,对于每个节点 node,我们有两种选择:

  1. 如果我们盗取了当前节点 node,则不能盗取其孩子节点。因此,最大金额为 node.val + dp[node.left.left] + dp[node.left.right] + dp[node.right.left] + dp[node.right.right]。
  2. 如果我们不盗取当前节点 node,则可以选择盗取其左孩子和右孩子。因此,最大金额为 dp[node.left] + dp[node.right]。

最后,我们返回根节点的最大金额,即 dp[root]。

这样,我们可以通过动态规划来高效地解决这个问题,确保小偷在不触发警报的情况下,一晚能够盗取的最高金额。

# Definition for a binary tree node.
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass Solution:def rob(self, root: TreeNode) -> int:# 调用辅助函数并返回根节点的最大金额return max(self.dfs(root))# 定义一个辅助函数来计算盗取以root为根节点的子树所能获得的最大金额def dfs(self, node):if not node:return 0, 0  # 返回不盗取当前节点和盗取当前节点的最大金额# 递归计算左右子树的最大金额left_no_rob, left_rob = self.dfs(node.left)right_no_rob, right_rob = self.dfs(node.right)# 不盗取当前节点时,可以选择盗取左右子树的根节点或者不盗取左右子树的根节点no_rob = max(left_no_rob, left_rob) + max(right_no_rob, right_rob)# 盗取当前节点时,不能盗取左右子树的根节点rob = node.val + left_no_rob + right_no_robreturn no_rob, robroot = TreeNode(3,2,3)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.right = TreeNode(3)
root.right.right = TreeNode(1)obj = Solution()print(obj.rob(root))

感想:这题有点变化,用到了二叉树,这里要先算子节点的最大值,再算父节点,所以这题要采用后序遍历。

这篇关于算法打卡day41的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962731

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个