噪声嵌入提升语言模型微调性能

2024-05-05 12:52

本文主要是介绍噪声嵌入提升语言模型微调性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在自然语言处理(NLP)的快速发展中,大模型(LLMs)的微调技术一直是研究的热点。最近,一篇名为《NEFTUNE: NOISY EMBEDDINGS IMPROVE INSTRUCTION FINETUNING》的论文提出了一种新颖的方法,通过在训练过程中向嵌入向量添加噪声来提升模型的微调性能。这一发现为LLMs的进一步优化提供了新的思路。

传统的LLMs通常在原始网络数据上进行训练,然后针对较小但经过精心策划的指令数据集进行微调。这种指令微调对于发挥LLMs的潜力至关重要,而模型的实用性很大程度上取决于我们如何充分利用这些小型指令数据集。NEFTune的核心思想是在微调过程中的前向传播阶段向训练数据的嵌入向量添加随机噪声。这一简单的技巧可以在没有额外计算或数据开销的情况下显著提升指令微调的结果。实验表明,使用噪声嵌入对原始LLM(如LLaMA-2-7B)进行微调时,其在AlpacaEval上的性能从29.79%提升至64.69%,显示出约35个百分点的显著提升。

NEFTune(Noisy Embedding Instruction Fine Tuning)是一种新颖的微调技术,它通过在训练过程中向嵌入向量添加噪声来增强语言模型的性能。这种方法的核心思想是利用随机噪声作为一种正则化手段,以减少模型对训练数据的过度拟合,并提高其泛化能力。以下是NEFTune方法的详细说明:

噪声嵌入的引入

在传统的语言模型微调中,模型的嵌入层会将输入的词汇映射为固定长度的向量,这些向量随后会被用来生成模型的输出。NEFTune方法在这一过程中引入了随机噪声,具体做法是在嵌入向量的前向传播过程中添加一个随机噪声向量。

噪声的生成与缩放

NEFTune生成的噪声向量是通过独立同分布(iid)均匀分布采样得到的,然后通过一个缩放因子对整个噪声向量进行缩放。其中,L 是序列长度,d 是嵌入维度,而α 是一个可调参数。

这个缩放规则借鉴了对抗性机器学习文献中的噪声缩放规则,它会产生一个期望欧几里得范数约为 的随机向量。

训练过程

NEFTune的训练过程从数据集中采样一个指令,将其标记转换为嵌入向量。然后,与标准训练不同的是,NEFTune会向这些嵌入向量添加一个随机噪声向量。具体来说,算法的步骤如下:

  1. 初始化从预训练模型中得到的模型参数 θ。
  2. 重复以下步骤直到满足停止条件或达到最大迭代次数:
    • 从数据集 D 中采样一个minibatch的数据和标签(Xi​,Yi​)。
    • 将输入Xi​ 转换为嵌入向量 
    • 采样一个噪声向量ϵ,并将其缩放后加到嵌入向量上,得到噪声嵌入
    • 使用噪声嵌入进行预测
    • 根据损失函数 更新模型参数θ。
实验效果

实验结果表明,NEFTune在多个数据集上显著提升了模型的文本质量。例如,在7B规模的模型上,AlpacaEval的平均提升为15.1%。此外,即使是经过多轮RLHF调整的高级聊天模型(如LLaMA-2-Chat),也能通过NEFTune获得额外的性能提升。

结论

NEFTune通过在嵌入层引入噪声,作为一种数据增强手段,有效地提高了语言模型在指令微调任务上的性能。这种方法简单易行,且不需要额外的计算或数据开销,为LLMs的微调提供了一种有效的改进策略。

论文链接:http://arxiv.org/pdf/2310.05914

这篇关于噪声嵌入提升语言模型微调性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961770

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st