本文主要是介绍HDOJ 1071 The area,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1071
题目:
The area
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7341 Accepted Submission(s): 5138
Note: The point P1 in the picture is the vertex of the parabola.

Each test case contains three intersectant points which shows in the picture, they are given in the order of P1, P2, P3. Each point is described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).
2 5.000000 5.000000 0.000000 0.000000 10.000000 0.000000 10.000000 10.000000 1.000000 1.000000 14.000000 8.222222
33.33 40.69
解题思路:
求抛物线y = ax^2 + bx + c与一条直线y=f(x)围成的区域的面积S。S = SA - SB,SA表示抛物线与直线x = x2, x = x3 , y = 0围成的区域的面积,SB表示直线x = x2, x = x3 , y = 0 与 y = f(x)围成的梯形的面积。SB = 1/2 * (y2+y3) * (x3 - x2), SA = ∫ (ax^2 + bx + c) dx (x2->x3)从x2到x3积分。我们计算一下可以得到,S = 1/6 * a * (x2 - x3)^3, 剩下来的就是要求出a了。由抛物线的性质x1 = -b / (2a), 所以b = -2ax1。建立方程组 y1 = ax1^2 - 2ax1^2 + c, y3 = ax3^2 - a2x1*x3 + c;两式相减并化简得a = (y3 - y1) / (x1 - x3)^2.最后,我们就可以得到公式S = 1/6 *(y3 - y1) * (x2 - x3) / (x1 - x3) ^ 3。ps:纯数学题,高数忘得差不多了,算公式算了好久啊。
代码:
#include <cstdio>int main()
{int t;while(~scanf("%d", &t)){while(t--){double x1, y1, x2, y2, x3, y3;scanf("%lf%lf%lf%lf%lf%lf", &x1, &y1, &x2, &y2, &x3, &y3);printf("%.2f\n", (y3-y1)*(x2-x3)*(x2-x3)*(x2-x3)/6.0/(x1-x3)/(x1-x3));}}return 0;
}
这篇关于HDOJ 1071 The area的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!