节能洗车房车牌识别项目实战

2024-05-05 07:20

本文主要是介绍节能洗车房车牌识别项目实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目背景

学电子信息的你加入了一家节能环保企业,公司的主营产品是节能型洗车房。由于节水节电而且可自动洗车,产品迅速得到了市场和资本的认可。公司决定继续投入研发新一代产品:在节能洗车房的基础上实现无人值守的功能。新产品需要通过图像识别检测出车牌号码,车主通过扫码支付后,洗车房的卷帘门自动开启。新产品的研发由公司总工亲自挂帅,他对团队寄予厚望,作为人工智能训练师,你被分在图像识别团队。项目经理为你提供了数百张原始车牌图片,并配备了一位资深算法工程师为你提供预训练模型,要求你在硬件设计定稿打样之前,完成车牌识别的模型训练,能够识别京牌车号,并部署到边缘计算设备上测试通过。为了给后续实际上线工作提供可靠的基础,你的工作需要在一周内完成,请尽快开始。

分析项目

项目中需要我们通过图像识别能够检测出京牌车号,既然是图像识别,那就离不了cnn,而且里面还有一个要求是部署到边缘计算设备上,那么我们的网络及模型对硬件算力的要求就不能太高。这里我先想到的了LeNet,它输入数据大小是32*32的,也就是说拿到一张车牌图片,需要有以下步骤:切分图片、依次传入网络识别、拼接输出结果。

LeNet网络结构LeNet网络结构图

内心:“哦?就这三步骤?分分钟搞完。开始第一步:切分图片,好的第一步不会,项目崩溃“

后两步还好,难就难在切分图片,切分依据是什么?如何编写切分程序?切分程序能否在大多数据集上表现效果好?

🤔难道就要放弃了吗,要放弃了吗,真的要放弃了吗,不!我还有大招没放。之前参加过一个比赛也是关于车牌识别检测的,它给的数据集车牌图片是人在路边拍的,需要先裁剪出车牌图片再进行识别,记得当时做那个项目用了Yolo7 和 paddleocr这两个开源技术。不过这个洗车房项目里只要求了完成识别所以就免去第一步了,直接对车牌去进行识别。好的,识别这里我用LPRNet代替paddleocr

为什么要用LPRNet呢?原因如下:

  • LPRNet模型大小仅有1.8兆,非常轻量
  • LPRNet也是上次比赛中学习到的,那会我也去尝试了几遍,可是我测试集的识别准确率就是很低,那个博主的准确率高达97%,不服绝对不服,一定是我上次的打开方式不对哈哈哈哈,带着上次的不解与困惑让我再试一次

那最终就确立LPRNet为本次项目的主体

项目流程

1.部署LPRNet到本地

2.LPRNet项目分析

3.准备数据集

4.训练模型


搭建项目

1.部署LPRNet到本地

下载LPRNet

LPRNet下载地址icon-default.png?t=N7T8https://github.com/sirius-ai/LPRNet_Pytorch

安装模块

README文件里有说

跑通测试代码

data文件夹下自带了1000张测试图片,运行项目根目下的 test_LPRNet.py 尝试跑通

test_LPRNet.py中的 show函数会起到一个阻塞作用,可以将参数show置为False

但直接将show置为False后,就不会展示以下每张图片的预测效果

若想看到预测效果可以在show函数内部进行部分注释,show参数那要置为True

2.LPRNet项目分析

总的来看,这个项目是比较简单的,代码只有这4个文件

  • load_data.py
  • LPRNet.py
  • test_LPRNet.py
  • train_LPRNet.py

现在我想知道的是它的输入图片大小、标签格式

load_data.py中有resize方法,且与test_LPRNet.py、train_LPRNet.py相关联,表示当我的图片像素大小不为94*24的时候,会调用该方法重置图片大小。(它不会覆盖原有输入数据集的图片,只会使输入其他大小的图片不会报错)

标签的格式即图片文件名

LPRNet网络结构,直接看代码会比较难理解,可以结合图片去看

使用以下代码得到可视化onnx模型,导入到网页 https://netron.app/

from LPRNet import build_lprnet
import torchlprnet = build_lprnet(lpr_max_len=8, phase=True, class_num=68, dropout_rate=0.5)
device = torch.device("cuda:0" if torch.cuda else "cpu")
lprnet.to(device)
print("Successful to build network!")inputs = (1, 3, 24, 94)
input_data = torch.randn(inputs).to(device)
torch.onnx.export(lprnet, input_data, 'lpr.onnx')

3.准备数据集

我用的数据集是CBLPRD-330k,用代码将里面为京牌的图片提取出来,有9000多张

import logging
import random
import os
import shutil# 需要修改为自己的实际路径
datas = open('../data.txt', 'r').readlines()
total = len(datas)
# random.shuffle(datas)print('开始过滤数据····')
jing = []
blue = []
green = []
for data_txt in datas:directory, licen, color = data_txt.split()if licen[0] == '京':if not licen[1].isdigit():if not licen[-1] == '挂':if not licen[-1] == '学':print(licen)if len(licen) == 7:blue.append(licen)elif len(licen) == 8:green.append(licen)else:logging.warning(len(licen))jing.append(licen)new_dir = '京/' + licen + '.jpg'shutil.copy(os.path.join('../', directory), new_dir)
print('total:', len(jing))
print('blue:', len(blue))
print('green:', len(green))

划分数据集(train、test)

import shutil
import random
from tqdm import tqdm
import osdirectory = 'data'
datas = os.listdir(directory)
random.shuffle(datas)
total = len(datas)
# 90 10
train_data = datas[:int(0.9 * total)]
test_data = datas[int(0.9 * total):]if not os.path.exists('train'):os.mkdir('train')if not os.path.exists('test'):os.mkdir('test')for data in tqdm(train_data):licen, suffix = data.split('.')new_dir = 'train/' + licen + '.' + suffixshutil.copy(os.path.join(directory, data), new_dir)
print('exec train over')for data in tqdm(test_data):licen, suffix = data.split('.')new_dir = 'test/' + licen + '.' + suffixshutil.copy(os.path.join(directory, data), new_dir)
print('exec test over')

4.训练模型

虽然有9000张,其实也不算多,所以这里要用迁移学习思想

tips:比赛那次识别度低原因就是没有用迁移学习,全部参数传入,随着训练的进行,模型中的可学习参数层的参数都发生改变导致的🤧

  1. 将weights目录下自带的Final_LPRNet_model.pth重名为Pre_LPRNet_model.pth,将参数pretrained_model指定为预训练模型Pre_LPRNet_model.pth
  2. 冻结网络主干部分,仅训练输出层
    # 将不更新的参数的requires_grad设置为False
    for name, param in lprnet.backbone.named_parameters():param.requires_grad = False
    # 仅把需要更新的模型参数传入optimizer
    optimizer = optim.RMSprop(lprnet.container.parameters(), lr=args.learning_rate, alpha=0.9, eps=1e-08,momentum=args.momentum, weight_decay=args.weight_decay)
  3. (可选)加入tensorboard可视化训练
    from torch.utils.tensorboard import SummaryWriter# 加入到训练的地方(只加入了loss变化图)
    writer.add_scalar('loss', scalar_value=loss.item(), global_step=epoch)
    writer.close()# 可以定义在 if __name__ == "__main__": 里
    writer = SummaryWriter()

指定参数,绿色箭头表示一些常用的参数

运行train_LPRNet.py进行训练

5.测试

我这里训练了14轮,cpu上测试得到的效果 800多张图片准确率在86%~87%

在15轮之后,loss值会反弹的很厉害,效果会变差

项目总结

通过这个项目,又学到了一些新的东西,巩固实践了旧的知识。还有就是写这个总结挺费劲的,写总结花费的时间比我做项目的时间还要久····

项目拓展

洗车房项目所使用的数据集图像大小全部为128 * 48,这种图片相当于贴脸拍了

现在的需求:当给到一张大图片的时候,也能够识别出来、识别准确。

就是说,我现在拿自己手机去外面拍一张,只要这张照图片里有车牌都要能够识别到

这就需要使用YOLO先对目标(车牌)进行定位,再通过LPRNet识别,好!开整!

1.训练车牌识别模型

这次我用yolov5来做,就不写那么详细了,类似的训练详解我之前博客有可以去看

数据有限,网上找了36张图片标注训练,15张图片测试

测试图片

测试视频

有车牌识别模型了,看上去效果还不错

2.把LPRNet加入到yolov5的detect.py中

改了一下午,此时00:10终于完成啦!现在可识别图片也可以识别视频流,而且可以显示中文哦!

由于detect.py代码篇幅较长,改动的地方解释起来不是很好理解,也怕误导读者,所以就不在此解读了,如果你们对这个拓展感兴趣,等我整理好后会放到我的github主页,你们可以直接拿去调试

我的github主页:还没整理好呢,先不要着急!

最后感谢阅读!

这篇关于节能洗车房车牌识别项目实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961108

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

SpringBoot项目启动报错"找不到或无法加载主类"的解决方法

《SpringBoot项目启动报错找不到或无法加载主类的解决方法》在使用IntelliJIDEA开发基于SpringBoot框架的Java程序时,可能会出现找不到或无法加载主类com.example.... 目录一、问题描述二、排查过程三、解决方案一、问题描述在使用 IntelliJ IDEA 开发基于

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕