C语言之数据结构之栈和队列的运用

2024-05-05 05:04

本文主要是介绍C语言之数据结构之栈和队列的运用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1. 用队列实现栈
      • 1.1 思路讲解
      • 1.2 代码实现
    • 2. 用栈实现队列
      • 1.1 思路讲解
      • 1.2 代码实现
    • 总结

在这里插入图片描述
•͈ᴗ•͈ 个人主页:御翮
•͈ᴗ•͈ 个人专栏:C语言数据结构
•͈ᴗ•͈ 欢迎大家关注和订阅!!!

在这里插入图片描述

1. 用队列实现栈

题目描述:

请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(pushtoppopempty)。

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。
  • int pop() 移除并返回栈顶元素。
  • int top() 返回栈顶元素。
  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false

注意:

  • 你只能使用队列的标准操作 —— 也就是 push to backpeek/pop from frontsizeis empty 这些操作。
  • 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。

示例:

输入:
[“MyStack”, “push”, “push”, “top”, “pop”, “empty”]
[ [ ], [1], [2], [ ], [ ], [ ] ]
输出:
[ null, null, null, 2, 2, false ]

解释:

MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False

提示:

  • 1 <= x <= 9
  • 最多调用100pushpoptopempty
  • 每次调用 poptop 都保证栈不为空

1.1 思路讲解

首先队列的特性是先入先出,而栈的特性是先入后出

题目说用两个队列实现一个栈

所以当栈为空时我们有两个空队列q1和q2

我们入数据时先默认入q2,假设这里依次入1、2、3

在这里插入图片描述

如果这个时候我们要出栈呢,如果按队列先入先出,我们会拿到1而不是最后入的3

此时我们可以先把1和2依次放入q1中,此时q2中就只剩3,就可以先取出3了

在这里插入图片描述

如果我们接着要放数据,就放入非空的队列q1,这样留一个队列q2为空,就还可以继续这样的出栈操作

在这里插入图片描述

当我们要继续出栈时,就把前n-1个数据放入空的队列中,再把最后一个数据取出,这样如此颠倒反复,就完成了先入后出的操作

在这里插入图片描述

1.2 代码实现

队列代码:

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>typedef int QDatatype;typedef struct QNode
{struct QNode* next;QDatatype data;
}QNode;typedef struct Queue
{QNode* head;QNode* tail;
}Queue;void Init_Queue(Queue* ptr)
{assert(ptr);ptr->head = ptr->tail = NULL;
}
void Destroy_Queue(Queue* ptr)
{assert(ptr);QNode* cur = ptr->head;while (ptr->head != NULL){cur = ptr->head;ptr->head = ptr->head->next;free(cur);}ptr->tail = NULL;
}QNode* Buy_Node()
{QNode* tmp = (QNode*)malloc(sizeof(QNode));return tmp;
}void Print_Queue(Queue* ptr)
{assert(ptr);QNode* cur = ptr->head;while (cur != NULL){printf("%d ", cur->data);cur = cur->next;}printf("\n");
}void Push_Queue(Queue* ptr, QDatatype val)
{assert(ptr);QNode* newnode = Buy_Node();if (newnode == NULL){perror("Push_Queue\n");exit(1);}newnode->data = val;newnode->next = NULL;if (ptr->head == NULL){ptr->head = ptr->tail = newnode;}else{ptr->tail->next = newnode;ptr->tail = newnode;}
}int Queue_Size(Queue* ptr)
{assert(ptr);int count = 0;QNode* cur = ptr->head;while (cur != NULL){cur = cur->next;count++;}return count;
}void Pop_Queue(Queue* ptr)
{assert(ptr);if (ptr->head == NULL){printf("队列中没有元素\n");return;}if (Queue_Size(ptr) == 1){free(ptr->tail);//如果删完了但是没有将tail置为NULL,则case 5 会发生错误,显示队尾元素随机值。ptr->tail = NULL;ptr->head = NULL;return;}QNode* pop = ptr->head;ptr->head = ptr->head->next;free(pop);
}QDatatype Queue_Front(Queue* ptr)
{assert(ptr);return ptr->head->data;
}QDatatype Queue_Back(Queue* ptr)
{assert(ptr);return ptr->tail->data;
}int Check_Empty(Queue* ptr)
{assert(ptr);if (Queue_Size(ptr))return 0;elsereturn 1;
}//以上是自己创建的队列,因为c语言没有队列

队列实现栈代码:

typedef struct 
{Queue q1;Queue q2;
} MyStack;// 创建栈
MyStack* myStackCreate() 
{MyStack* tmp = (MyStack*)malloc(sizeof(MyStack));if (tmp == NULL) // 开辟空间可能失败,失败则终止程序{printf("Fail: myStackCreate\n");exit(1);}Init_Queue(&tmp->q1); // 我们的栈由两个队列组成,所以初始化要调用队列的初始化Init_Queue(&tmp->q2);return tmp;
}// 数据入栈
void myStackPush(MyStack* obj, int x) 
{if (Check_Empty(&obj->q1)) // 哪个队列有元素就往哪放,两个都没有就默认放q2,保证只有一个队列有数据{Push_Queue(&obj->q2, x);}elsePush_Queue(&obj->q1, x);
}// 数据出栈
int myStackPop(MyStack* obj) 
{//题目保证每次调用pop时栈都不为空,不用考虑为空时的popif (Check_Empty(&obj->q1)) // 哪个队列有数据就将n-1个数据放到另一个队列,剩下的最后一个元素就是栈顶元素,直接出栈{int sum = Queue_Size(&obj->q2); // 获取队列元素个数nfor (int i = 0; i < sum - 1; i++) // 将前n-1个数据放到另一个空队列{Push_Queue(&obj->q1, Queue_Front(&obj->q2));Pop_Queue(&obj->q2);}QDatatype tmp = Queue_Front(&obj->q2); // 保存最后一个元素的值,再pop,因为要返回出栈元素的值Pop_Queue(&obj->q2);return tmp;}else{int sum = Queue_Size(&obj->q1);for (int j = 0; j < sum - 1; j++){Push_Queue(&obj->q2, Queue_Front(&obj->q1));Pop_Queue(&obj->q1);}QDatatype tmp = Queue_Front(&obj->q1);Pop_Queue(&obj->q1);return tmp;}
}// 获取栈顶元素
int myStackTop(MyStack* obj) 
{//题目保证每次调用top时栈都不为空,不用考虑为空时的topif (Check_Empty(&obj->q1)) // 因为我们前面入栈时保证了只有一个队列有数据,所以队尾元素就是栈顶元素{return Queue_Back(&obj->q2);}elsereturn Queue_Back(&obj->q1);
}// 判断栈是否为空
bool myStackEmpty(MyStack* obj) 
{if (Check_Empty(&obj->q1) && Check_Empty(&obj->q2)) // 栈由两个队列组成,两个队列都为空栈就为空{return true;}elsereturn false;
}// 销毁栈
void myStackFree(MyStack* obj) 
{Destroy_Queue(&obj->q1); // 消耗栈要销毁里面的两个队列Destroy_Queue(&obj->q2);free(obj);
}

2. 用栈实现队列

题目描述:

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(pushpoppeekempty)。

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

注意:

  • 你只能使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

示例 :

输入:
[“MyQueue”, “push”, “push”, “peek”, “pop”, “empty”]
[ [ ], [1], [2], [ ], [ ], [ ] ]
输出:
[ null, null, null, 1, 1, false ]

解释:

MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

提示:

1 <= x <= 9
最多调用 100pushpoppeekempty
假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)

1.1 思路讲解

首先栈的特性是先入后出,而队列的特性是先入先出

题目说用两个栈实现一个队列

所以当队列为空时我们有两个空栈

我们给这两个栈分别命名为push和pop

我们入数据只往push里放

在这里插入图片描述

出数据的话,如果pop为空,我们就把push栈里面的数据全放进pop栈里,再出栈,就取到了队头的元素

在这里插入图片描述

如果pop不为空,就直接出栈就好了

在这里插入图片描述

后序有数据也是直接放在push,push只进行入栈,pop只进行出栈,不像用队列实现栈一样要来回颠倒。

1.2 代码实现

栈代码:

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>typedef int STDataType;typedef struct Stack
{STDataType* stack;int size;int capacity;
}Stack;void Init_Stack(Stack* ptr)
{assert(ptr);STDataType* tmp = (STDataType*)malloc(3 * sizeof(STDataType));if (tmp == NULL){perror("Init_Stack\n");exit(1);}ptr->stack = tmp;ptr->capacity = 3;ptr->size = 0;
}void Destroy_Stack(Stack* ptr)
{assert(ptr);free(ptr->stack);ptr->stack = NULL;
}void Check_Capacity(Stack* ptr)
{assert(ptr);if (ptr->size == ptr->capacity){STDataType* tmp = (STDataType*)realloc(ptr->stack, 2 * ptr->capacity * sizeof(STDataType));if (tmp == NULL){perror("Check_Capacity\n");exit(1);}ptr->stack = tmp;ptr->capacity *= 2;}
}void Print_Stack(Stack* ptr)
{assert(ptr);for (int i = 0; i < ptr->size; i++){printf("%d ", ptr->stack[i]);}printf("\n");
}void Push_Stack(Stack* ptr, STDataType val)
{assert(ptr);Check_Capacity(ptr);ptr->stack[ptr->size] = val;ptr->size++;
}void Pop_Stack(Stack* ptr)
{assert(ptr);ptr->size--;
}STDataType Top_Stack(Stack* ptr)
{assert(ptr);return ptr->stack[ptr->size - 1];
}int Size_Stack(Stack* ptr)
{assert(ptr);return ptr->size;
}int Empty_Stack(Stack* ptr)
{assert(ptr);if (ptr->size == 0)return 1;elsereturn 0;
}typedef struct 
{Stack push;Stack pop;
} MyQueue;

栈实现队列代码:

// 创建队列
MyQueue* myQueueCreate() 
{MyQueue* queue = (MyQueue*)malloc(sizeof(MyQueue));if (queue == NULL) // 开辟空间有可能失败,失败则终止程序{perror("myQueueCreate");exit(1);}Init_Stack(&queue->push); // 初始化队列要初始化里面的栈Init_Stack(&queue->pop);return queue;
}// 数据入队列
void myQueuePush(MyQueue* obj, int x) 
{Push_Stack(&obj->push, x); // 数据只入push栈
}// 数据出队列
int myQueuePop(MyQueue* obj) 
{if (Empty_Stack(&obj->pop)) // 如果pop栈为空,就要从push栈里面把数据拿过来{int sum = Size_Stack(&obj->push); // 获取push中的元素个数nfor (int i = 0; i < sum; i++){Push_Stack(&obj->pop, Top_Stack(&obj->push));Pop_Stack(&obj->push);}}int ret = Top_Stack(&obj->pop); // 先储存队头元素再出队列,因为题目要返回队头元素Pop_Stack(&obj->pop);return ret;
}// 获取队头元素
int myQueuePeek(MyQueue* obj) 
{if (Empty_Stack(&obj->pop)) // 如果pop栈为空,那就把push栈里面的元素拿过来{int sum = Size_Stack(&obj->push);for (int i = 0; i < sum; i++){Push_Stack(&obj->pop, Top_Stack(&obj->push));Pop_Stack(&obj->push);}}return Top_Stack(&obj->pop); // 队头元素就是pop栈中的栈顶元素,因为pop栈内的元素是push栈内的元素顺序颠倒过来
}// 判断队列是否为空
bool myQueueEmpty(MyQueue* obj) 
{if (Empty_Stack(&obj->push) && Empty_Stack(&obj->pop)) // 两个栈都为空,队列就为空{return true;}elsereturn false;
}// 销毁队列
void myQueueFree(MyQueue* obj) 
{Destroy_Stack(&obj->push);  // 销毁队列要销毁里面的两个栈Destroy_Stack(&obj->pop);free(obj);					// 不要忘记释放这个空间
}

总结

两个队列实现栈需要来回颠倒。
两个栈实现队列要确定一个push和一个pop。

这篇关于C语言之数据结构之栈和队列的运用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960856

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

Go语言中最便捷的http请求包resty的使用详解

《Go语言中最便捷的http请求包resty的使用详解》go语言虽然自身就有net/http包,但是说实话用起来没那么好用,resty包是go语言中一个非常受欢迎的http请求处理包,下面我们一起来学... 目录安装一、一个简单的get二、带查询参数三、设置请求头、body四、设置表单数据五、处理响应六、超

C语言中的浮点数存储详解

《C语言中的浮点数存储详解》:本文主要介绍C语言中的浮点数存储详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、首先明确一个概念2、接下来,讲解C语言中浮点型数存储的规则2.1、可以将上述公式分为两部分来看2.2、问:十进制小数0.5该如何存储?2.3 浮点

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring