FloodFill-----洪水灌溉算法(DFS例题详解)

2024-05-04 23:04

本文主要是介绍FloodFill-----洪水灌溉算法(DFS例题详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.图像渲染:

代码详解:

二.岛屿数量:

代码详解:

三.岛屿的最大面积:

代码详解:

四.被围绕的区域:

代码详解:

五.太平洋大西洋水流问题:

代码详解:


FloodFill算法简介:FloodFill(泛洪填充)算法是一种图像处理的基本算法,用于填充连通区域。该算法通常从一个种子点开始,沿着种子点的相邻像素进行填充,直到遇到边界或者其他指定的条件为止。FloodFill 算法的主要应用是在图像编辑软件中实现填充操作,以及在计算机图形学、计算机视觉等领域中进行区域填充。

下面我们通过一些题目来理解这个算法思想:

一.图像渲染:

  • 题目链接:733. 图像渲染 - 力扣(LeetCode)
  • 题目描述:

有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。

你也被给予三个整数 sr ,  sc 和 newColor 。你应该从像素 image[sr][sc] 开始对图像进行 上色填充 。

为了完成 上色工作 ,从初始像素开始,记录初始坐标的 上下左右四个方向上 像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应 四个方向上 像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为 newColor 。

最后返回 经过上色渲染后的图像 。 ​

  • 对应函数签名如下:

  •  思路:我们从给定的起点开始,进行深度优先搜索(上下左右四个方向)。每次搜索到一个方格时,如果其与初始位置的方格颜色相同,就将该方格的颜色更新,以防止重复搜索;如果不相同,则进行回溯。这里我们设置初始方格为target.

代码详解:

解法一:

class Solution {//记录走过的路径,防止走回头路boolean[][] used;int target;public int[][] floodFill(int[][] image, int sr, int sc, int color) {int m = image.length,n = image[0].length;used = new boolean[m][n];target = image[sr][sc];dfs(image,sr,sc,color);return image;}public void dfs(int[][] image,int i,int j,int color){int m = image.length,n = image[0].length;//剪枝,越界直接返回if(i < 0 || j < 0 || i >= m || j >= n){return ;}//使用过的位置也直接返回if(used[i][j]) return ;if(image[i][j] == target){//上下左右去深搜,符合条件的都标记为colorimage[i][j] = color;used[i][j] = true;dfs(image,i - 1,j,color);dfs(image,i + 1,j,color);dfs(image,i,j - 1,color);dfs(image,i,j + 1,color);}}
}

解法二:基于解法一,我们可以通过定义两个数组来表示方向:dx[ ],dy[ ],其中dx[ ],dy[ ]的位置要一一对应,具体操作如下:

 代码详解:

class Solution {boolean[][] used;int target;int[] dx = {-1,1,0,0};int[] dy = {0,0,1,-1};public int[][] floodFill(int[][] image, int sr, int sc, int color) {int m = image.length,n = image[0].length;used = new boolean[m][n];target = image[sr][sc];dfs(image,sr,sc,color);return image;}public void dfs(int[][] image,int i,int j,int color){int m = image.length,n = image[0].length;//每次进入都进行标记,并将该位置值改为colorused[i][j] = true;image[i][j] = color;//相当于上下左右四个方向进行深搜for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];//所有不符合条件的都不能进入深搜if(x >= 0 && x < m && y >= 0 && y < n&& !used[x][y] && image[x][y] == target){dfs(image,x,y,color);}}}
}

运行结果:

二.岛屿数量:

  • 题目链接:200. 岛屿数量 - 力扣(LeetCode)
  • 题目描述:

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

  •  对应函数签名如下:

  • 思路:
  • 遍历整个矩阵,每次找到「⼀块陆地」的时候:
  •  说明找到「⼀个岛屿」,记录到最终结果 res⾥⾯
  • 并且将这个陆地相连的所有陆地,也就是这块「岛屿」,全部「变成海洋」。这样的话,我们下次 遍历到这块岛屿的时候,它「已经是海洋」了,不会影响最终结果。
  •  其中「变成海洋」的操作,可以利⽤「深搜」来解决

代码详解:

 解法一:与上面一样,两种解法(类似):

class Solution {int res = 0;public int numIslands(char[][] grid) {int m = grid.length,n = grid[0].length;for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == '1'){//每次找到一个岛屿记录一下,再将这个岛屿淹没res++;dfs(grid,i,j);}}}return res;}public void dfs(char[][] grid,int i,int j){int m = grid.length,n = grid[0].length;//处理边界情况if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(grid[i][j] == '0') return ;grid[i][j] = '0'; //上下左右去淹没这个岛屿dfs(grid,i - 1,j);dfs(grid,i + 1,j);dfs(grid,i,j - 1);dfs(grid,i,j + 1);}
}

解法二:

class Solution {int res = 0;int[] dx = {0,0,-1,1};int[] dy = {1,-1,0,0};public int numIslands(char[][] grid) {int m = grid.length,n = grid[0].length;for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == '1'){//说明找到「⼀个岛屿」,记录到最终结果 res⾥⾯res++;dfs(grid,i,j);//将这个岛屿淹没}}}return res;}public void dfs(char[][] grid,int i,int j){int m = grid.length,n = grid[0].length;grid[i][j] = '0'; for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& grid[x][y] != '0'){dfs(grid,x,y);}}}
}

运行结果:

 

三.岛屿的最大面积:

  • 题目链接:695. 岛屿的最大面积 - 力扣(LeetCode)
  • 题目描述:

    给你一个大小为 m x n 的二进制矩阵 grid 。

    岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

    岛屿的面积是岛上值为 1 的单元格的数目。

    计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 

  • 对应函数签名:

算法思路:

• 遍历整个矩阵,每当遇到⼀块⼟地的时候,就⽤「深搜」或者「宽搜」将与这块⼟地相连的「整个 岛屿」的⾯积计算出来

• 然后在搜索得到的「所有的岛屿⾯积」求⼀个「最⼤值」即可

• 在搜索过程中,为了「防⽌搜到重复的⼟地」:

◦ 可以开⼀个同等规模的「布尔数组」,标记⼀下这个位置是否已经被访问过;

◦ 也可以将原始矩阵的 1 修改成 0 ,但是这样操作会修改原始矩阵。 

代码详解:

 解法一:

class Solution {int maxArea = 0;int count;boolean[][] used;public int maxAreaOfIsland(int[][] grid) {int m = grid.length,n = grid[0].length;used = new boolean[m][n];for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == 1){//每次找到一个岛屿都要重置计数count = 0;dfs(grid,i,j);maxArea = Math.max(maxArea,count);}}}return maxArea;}public void dfs(int[][] grid,int i,int j){int m = grid.length,n = grid[0].length;//处理边界情况if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(grid[i][j] == 0) return ;if(used[i][j]) return ;used[i][j] = true;count++;dfs(grid,i - 1,j);dfs(grid,i + 1,j);dfs(grid,i,j - 1);dfs(grid,i,j + 1);}
}

解法二:

class Solution {int maxArea = 0;int count = 0;int[] dx = {0,0,-1,1};int[] dy = {1,-1,0,0};boolean[][] used;public int maxAreaOfIsland(int[][] grid) {int m = grid.length,n = grid[0].length;used = new boolean[m][n];for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == 1){//每次找到一个岛屿都要重置计数count = 0;dfs(grid,i,j);maxArea = Math.max(maxArea,count);}}}return maxArea;}public void dfs(int[][] grid,int i,int j){int m = grid.length,n = grid[0].length;used[i][j] = true;count++;for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];//处理不满足条件的情况if(x >= 0 && x < m && y >= 0 && y < n && !used[x][y] && grid[x][y] != 0){dfs(grid,x,y);}}}
}

运行结果:

四.被围绕的区域:

  • 题目链接:130. 被围绕的区域 - 力扣(LeetCode)
  • 题目描述:给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。

  • 对应函数签名:

  • 算法思路: 
  • 正难则反。 可以先利⽤ dfs 将与边缘相连的 '0' 区域做上标记,然后重新遍历矩阵,将没有标记过的 '0' 修改成 'X' 即可。

 

代码详解:

class Solution {boolean[][] used;public void solve(char[][] board) {int m = board.length,n = board[0].length;used = new boolean[m][n];//分别对应上下左右,标记外围的'O'for(int i = 0;i < n;i++){dfs2(board,0,i);dfs2(board,m - 1,i);}for(int j = 0;j < m;j++){dfs2(board,j,0);dfs2(board,j,n - 1);}for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(board[i][j] != 'X' && !used[i][j]){dfs(board,i,j);}}}}//将内部的'O'全部标记为'X'public void dfs(char[][] board,int i,int j){int m = board.length,n = board[0].length;if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(board[i][j] == 'X') return;if(used[i][j]) return ;used[i][j] = true;board[i][j] = 'X';dfs(board,i - 1,j);dfs(board,i + 1,j);dfs(board,i,j - 1);dfs(board,i,j + 1);}//将外围的位置标记为true,后续不会对其进行操作public void dfs2(char[][] board,int i,int j){int m = board.length,n = board[0].length;if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(board[i][j] == 'X') return;if(used[i][j]) return ;used[i][j] = true;dfs2(board,i - 1,j);dfs2(board,i + 1,j);dfs2(board,i,j - 1);dfs2(board,i,j + 1);}
}

运行结果:

五.太平洋大西洋水流问题:

  • 题目链接:417. 太平洋大西洋水流问题 - 力扣(LeetCode)
  • 题目描述:

有一个 m × n 的矩形岛屿,与 太平洋 和 大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界,而 “大西洋” 处于大陆的右边界和下边界。

这个岛被分割成一个由若干方形单元格组成的网格。给定一个 m x n 的整数矩阵 heights , heights[r][c] 表示坐标 (r, c) 上单元格 高于海平面的高度 。

岛上雨水较多,如果相邻单元格的高度 小于或等于 当前单元格的高度,雨水可以直接向北、南、东、西流向相邻单元格。水可以从海洋附近的任何单元格流入海洋。

返回网格坐标 result 的 2D 列表 ,其中 result[i] = [ri, ci] 表示雨水从单元格 (ri, ci) 流动 既可流向太平洋也可流向大西洋 。

  • 对应函数标签: 

  •  算法思路:

正难则反。 如果直接去判断某⼀个位置是否既能到⼤西洋也能到太平洋,会重复遍历很多路径。 我们反着来,从⼤西洋沿岸开始反向 dfs ,这样就能找出那些点可以流向⼤西洋;同理,从太平洋沿 岸也反向 dfs ,这样就能找出那些点可以流向太平洋。那么,被标记两次的点,就是我们要找的结果

 

代码详解:

class Solution {int m ,n;int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};public List<List<Integer>> pacificAtlantic(int[][] heights) {m = heights.length;n = heights[0].length;boolean[][] pac = new boolean[m][n];boolean[][] atl = new boolean[m][n];//先搞太平洋for(int j = 0;j < n;j++) dfs(heights,0,j,pac);for(int i = 0;i < m;i++) dfs(heights,i,0,pac);//在搞大西洋for(int i = 0;i < m;i++) dfs(heights,i,n - 1,atl);for(int j  = 0;j < n;j++) dfs(heights,m - 1,j,atl);//再提取结果:List<List<Integer>> res = new ArrayList<>();for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(pac[i][j] && atl[i][j]){List<Integer> temp = new ArrayList<>();temp.add(i);temp.add(j);res.add(temp);}}}return res;}public void dfs(int[][] heights,int i,int j,boolean[][] used){used[i][j] = true;for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n && !used[x][y] && heights[x][y] >= heights[i][j]){dfs(heights,x,y,used);}}}
}

运行结果:

 

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

这篇关于FloodFill-----洪水灌溉算法(DFS例题详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960285

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)